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ABSTRACT
Network Telescopes, often referred to as darknets, capture unso-
licited traffic directed toward advertised but unused IP spaces, en-
abling researchers and operators to monitor malicious, Internet-
wide network phenomena such as vulnerability scanning, botnet
propagation, and DoS backscatter. Detecting these events, however,
has become increasingly challenging due to the growing traffic vol-
umes that telescopes receive. To address this, we introduceDarkSim,
a novel analytic framework that utilizes Dynamic Time Warping
to measure similarities within the high-dimensional time series
of network traffic. DarkSim combines traditional raw packet pro-
cessing with statistical approaches, identifying traffic anomalies
and enabling rapid time-to-insight. We evaluate our framework
against DarkGLASSO, an existing method based on the Graphical
LASSO algorithm, using data from the UCSD Network Telescope.
Based on our manually classified detections, DarkSim showcased
perfect precision and an overlap of up to 91% of DarkGLASSO’s de-
tections in contrast to DarkGLASSO’s maximum of 73.3% precision
and detection overlap of 37.5% with the former. We further demon-
strate DarkSim’s capability to detect two real-world events in our
case studies: (1) an increase in scanning activities surrounding CVE
public disclosures, and (2) shifts in country- and network-level scan-
ning patterns that indicate aggressive scanning. DarkSim provides
a detailed and interpretable analysis framework for time-series
anomalies, representing a new contribution to network security
analytics.

CCS CONCEPTS
• Networks→ Network measurement; Network security.
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1 INTRODUCTION
Internet Background Radiation (IBR) consists of unsolicited network
traffic emitted by globally-distributed devices connected over the
Internet. Unused address spaces occupied by network telescopes,
often referred to as darknets, capture this traffic and thus serve
as vital observatories for monitoring its network activities which
include malicious scanning campaigns [20], denial-of-service (DoS)
attacks [43, 44, 58, 73], and outages [21, 61]. While these activities
account for the majority of changes in IBR traffic, their prompt
detection and accurate identification prove challenging though
critical due to their security implications.

Rapid evolution in the network threat landscape, driven by wide-
spread use of rapid scanning tools (e.g.,[24, 29]) and ever-evolving
attack vectors, has increased the volume and complexity of IBR
which in turn challenges the effectiveness of traditional detection
methods. While signature-based packet filtering approaches are
capable of processing large traffic volumes in real-time, the fixed
nature of their detection mechanism does not proactively adapt to
unseen traffic events. Classical statistical methods, such as change
point detection [1, 2, 39], often make statistical assumptions about
traffic characteristics that, when incorrect, translate to poor de-
tection accuracy. Although recent applications of representation
learning techniques [28, 45] show empirical promise, they require
substantial computational resources and expertise to implement,
and their resulting models often lack interpretability to non-experts.

Motivated by these challenges, we develop DarkSim, a novel
analytics framework designed to detect both unseen and recurring
traffic anomalies. Utilizing the Dynamic Time Warping (DTW) [7,
10, 23, 62] in its core, DarkSim analyzes IBR telemetry data from
network telescopes to identify unusual traffic patterns that merit
further investigation at a significantly lower "time to insight" com-
pared to traditional methods reliant on high-resolution data such as
packet traces and flows. We design our framework based on these
three principles:

(1) No model assumptions. It does not rely on a priori knowledge
and makes minimal statistical assumptions about network
traffic characteristics.
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(2) Computationally scalable. The computation time of our anal-
ysis is relatively constant because DTW is independent of
the volume of traffic and the complexity of the time series
segments. Moreover, our implementation leverages the par-
allelism of high-performance computing clusters for DTW
score computation, thereby reducing the time required to
detect anomalies.

(3) Explainable. Its results are easily interpreted as we can iden-
tify key characteristics in time series segments that explain
similarity scores. Identification of anomalous segments’ time-
frames and traffic properties facilitates further investigation
of traffic events.

In this paper, we detail our design ofDarkSim (§3), extended from
our prior work [27], and its implementation which leverages open-
source tools, such as DTAIDistance [52], to compute DTW scores,
and integrates parallel computing technologies, such as Dask [22],
to enable rapid processing of time series.We demonstrateDarkSim’s
capabilities by analyzing time series data of IBR traffic statistics
collected from the UCSD Network Telescope (UCSD-NT) [15], the
world’s largest darknet encompassing approximately 12 million
IPv4 addresses, with our implementation deployed to Expanse [71],
a high-performance computing (HPC) cluster at the San Diego
Supercomputing Center. Our evaluation benchmarks DarkSim’s
detection capabilities against DarkGLASSO [31, 32], a recent frame-
work based on the Graphical LASSO (GLASSO) algorithm [25] (§4).
We further evaluate DarkSim’s practical application in two case
studies, detecting (1) an increase in scanning activities surround-
ing CVE public disclosures (§5.1); and (2) shifts in country- and
network-level scanning patterns that suggest aggressive scanning
(§5.2).
To summarize, our contributions are as follows:
• We implement DarkSim using open-source tools for offline
batch processing of IBR time series in parallel computation
environments. We release its source code1 and experimental
artifacts produced in this work.
• WebenchmarkDarkSim’s detection capabilities againstDark-
GLASSO [31, 32], a recent framework based on the GLASSO
algorithm [25]. Our framework achieved perfection preci-
sion and a maximum overlap of 91% with DarkGLASSO’s
detections, in contrast to DarkGLASSO’s maximum of 73.3%
precision and 37.5% overlap.
• We demonstrate DarkSim’s practical utility in two case stud-
ies:
– Our first case study detected signatures of scanning ac-
tivities that targeted TCP ports of applications reported
to contain Remote Code Execution (RCE) vulnerabilities,
identified in Microsoft’s February 2023 Patch Tuesday. Fur-
ther analysis revealed the sources of these activities as 9
Autonomous Systems (ASes) based in China. In addition,
we used the discovered anomalous signatures to trace his-
torical incidents from 2022 to 2023, matching on over 1,600
ports, including those related to recent vulnerabilities in
Kubernetes.

– Our second case study detected anomalies in country-
level packet count time series. We identified scanning

1https://github.com/CAIDA/DarkSim

Table 1: Trade-offs between resolution and data sizes of file
formats collected by UCSD-NT. The order of magnitude in
file size reductions depends on the number of unique time-
series analyzed.

Tr
affi

c
Re

so
lu
tio

n y
File Format Daily Avg. File Size

(2022-08)
Packet Capture (.pcap.gz) 3.86 TB
One-way Flow (.avro) 0.076 TB

21̂6 time series (.parquet.gzip) 0.001 TB

x D
at
a
Si
ze

20
08
-0
6

20
08
-1
2

20
09
-0
6

20
09
-1
2

20
10
-0
6

20
10
-1
2

20
11
-0
6

20
11
-1
2

20
12
-0
6

20
12
-1
2

20
13
-0
6

20
13
-1
2

20
14
-0
6

20
14
-1
2

20
15
-0
6

20
15
-1
2

20
16
-0
6

20
16
-1
2

20
17
-0
6

20
17
-1
2

20
18
-0
6

20
18
-1
2

20
19
-0
6

20
19
-1
2

20
20
-0
6

20
20
-1
2

20
21
-0
6

20
21
-1
2

20
22
-0
6

20
22
-1
2

Date

0

2

4

6

Da
il
y 
Co
mp
re
ss
ed
 

PC
AP
 F
il
es
iz
e 
(T
B)

25-75 Percentile
Median
Max
/10 Sale

Figure 1: Traffic volume growth over the past 20 years chal-
lenges the timely analysis of darknet traffic.

campaigns originating from a networks geolocated to the
Netherlands and US, which corresponded with significant
drops in traffic from over hundreds of other countries.

2 BACKGROUND
2.1 Challenges to IBR event detection
IBR’s growth poses practical challenges to its timely analysis. Over
the past two decades, IBR volumes captured at UCSD-NT, the
world’s largest network telescope, have grown by more than three
orders of magnitude to a daily median filesize of over 3.5 terabytes
(Figure 1) despite a 25% reduction in address space in 2019, pacing
the growth of estimated global traffic [41].

Flow aggregation techniques similar to those used for traffic
in production networks, e.g., Netflow [35], have been developed
for unidirectional darknet traffic. Custom representations such as
FlowTuple [12] aggregate 5-minutes of raw packets of IBR into
compressed file formats, e.g., Avro [6]. To analyze events using
this intermediary data representation, researchers must still ingest
large volumes, albeit up to two orders of magnitude less than raw
packets (Table 1), and know the precise times an event of inter-
est occurs. On the other hand, event-specific representations, e.g.,
Merit’s ORION project [65] and CAIDA’s RSDoS [13], filter traffic
that matches event definitions based on inference heuristics, such
as Masscan [29] packet fingerprints and TCP headers inferred to
be randomly-spoofed denial-of-service [58]. However, these fixed
heuristics do not flexibly adapt to other (including new) activities
observed in IBR.

These challenges motivate us to develop a generalized frame-
work capable of detecting a wide range of activities without the
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Table 2: Traffic properties, metrics, and filters whose combinations produce over 4.9M (327K × 5 × 3) time series as potential
inputs to DarkSim.

Traffic Properties
Property Class Unique Count

Origin ASN 130K+
Geolocation 255
Protocol Number 256
TCP/UDP Dest. Port 131072
ICMP Type & Code 65536

Metrics

# packets (PPM)
# bytes (BPM)
# unique source IPs
# unique source ASNs
# unique dest. IPs

Filters

Unfiltered
Inferred Non-Spoofed
Inferred Spoofed
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(a) Unique source IPs perminute for 6 coun-
tries, 4 of which show stable diurnal pat-
terns of different amplitudes and phases.
Germany (DE) and US instead show irregu-
lar square/horizontal patterns.
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(b) Unique source IPs per minute for 10
well-known TCP destination ports. Some
ports (e.g., 23 and 80) show similar patterns
with synchronized changes. Some events
impact only one port (e.g., 53 on May 2).
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(c) Packets per minute for 10 well-known
TCP destination ports. This metric exhibits
noisier characteristics than that of Fig. 2b
for the same ports.

Figure 2: Time series of traffic captured by UCSD-NT (April 30 - May 3, 2023) whose characteristics (e.g., magnitude, pattern,
and periodicity) vary across different traffic properties and metrics.

processing costs of analysis using higher resolution formats, i.e.,
raw packet or flow representations.

2.2 UCSD-NT Time Series Data
UCSD-NT computes metrics per set of traffic properties (Table 2) to
provide a glimpse into IBR dynamics in near real-time. In addition to
the traditional network 5-tuple (src/dst IPs, src/dst ports, and proto-
col), properties include inference of spoofed source address [19] and
labels from other datasets, such as ASNs and geolocation. UCSD-
NT stores the time series data into InfluxDB [38], visible through
publicly accessible Grafana dashboards [14].

2.3 Dynamics of IBR in UCSD-NT
By applying the properties to traffic metrics listed in Table 2, we
derive over 200k unique time series from raw IBR packets. Figure 2
shows several such time series selected from a week in May 2023,
highlighting differences in scale, characteristics (e.g., wave-like,
square-like, and step-wise), variance, and periodicity. To monitor
and detect events in IBR, we desire a general approach that accounts
for this spatiotemporal variety and reliably discerns anomalies. We
identify three properties that such an approach may leverage:

(1) High similarity within the same time series. Recurring scanning
activity of malware-infected end-hosts produces diurnality in

some metrics (e.g., number of unique source IPs). Deviations
from these known patterns indicate potential new events.

(2) Malicious activities trigger synchronized changes. Botnet com-
mands may induce simultaneous and overlapping scanning
campaigns to exploit new vulnerabilities. Synchronized anom-
alies across different traffic sources can indicate these activities.

(3) Time series patterns may reveal the use of probing tools/logic.
Algorithms used by measurement tools select packet-sending
rates and destinations, yielding distinct traffic patterns. Com-
paring time series with known patterns can reveal the nature
of events.

2.4 Measuring time series similarity
Algorithms that measure time series similarity differ in their trade-
offs between semantic accuracy, time complexity, and simplicity
of parameterization. While straightforward measures such as 𝐿𝑝 -
norms, e.g., theManhattanDistance (𝐿1), and correlation/covariance,
are inexpensive to compute and require no additional parameters,
their accuracy drops for noisy and lagged time series. More recent al-
gorithms [56] yield higher benchmarked accuracy and performance
but require tuning numerous parameters. We seek an algorithm that
produces semantically accurate measures, has low time complexity,
and requires few or no parameters.
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Figure 3: DarkSim System Architecture.
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Figure 4: Unique source IPs per minute for TCP destination
ports 80 and 445 after pre-processing their raw time series
presented in Fig. 2b.

2.4.1 Dynamic Time Warping. We apply the classic DTW algo-
rithm, a popular choice for analysis across a wide range of do-
mains [50, 51, 78], to darknet traffic time series. By temporally
aligning observations to account for potential time-shifts across
two time series, DTW produces semi-metric2 scores that accurately
quantify pattern similarities. This attribute is fundamental for IBR
signal analysis, especially in cases of coordinated attacks or scan-
ning where suspicious source behavior is unlikely to be perfectly
synchronized. Moreover, its computational complexity is controlled

2DTW’s scores do not formally abide by the triangle inequality, though empirically
they seldom violate it [59], which may impact the integrity of results for algorithms
that depend on metric inputs.

by a single parameter, the warp-width [68], which adjusts the max-
imum temporal alignment width as a fraction of the time series
length. Appendix B.1 provides in-depth details of DTW.

3 METHODOLOGY
DarkSim consists of three main steps: (1) preprocessing raw time se-
ries data (§3.1), (2) computing similarity scores between time series
segments (§3.2), (3) identifying anomalous segment patterns from
statistical properties of score distributions (§3.3). In the following
paragraphs, we explain the details of each step (summarized in
Figure 3) using notation from Table 3.

3.1 Data preparation
DarkSim preprocesses raw time series inputs by segmenting and
normalizing their observations. Separated according to their traffic
properties P (e.g., source port, destination port, etc.), each time
series 𝑋𝑇

𝑝 consists of 𝑇 observations sampled at a rate 𝑓 , with 𝑋 1
𝑝

and 𝑋𝑇
𝑝 representing an analysis interval’s first and last sampling

windows, respectively.
From a single time series, the segmentation step uses a pre-

specified segment length parameter 𝑏 to generate 𝑁 equal-length
segments, where 𝑁 = ⌈𝑇 /𝑏⌉. For |P| unique time series, this step
produces a total of |P|𝑁 segments. We provide a sensitivty anal-
ysis of 𝑏 in §4. DarkSim then applies 𝑍 -score normalization3 on
a per-segment basis to address scaling issues in the scoring pro-
cess. We denote these processed segments as X̂𝑛

𝑝 , with 𝑛 ranging
from 1 to 𝑁 . To illustrate this step, we utilize two time series from
Figure 2 representing the unique counts of IP source addresses to
TCP destination ports 80 and 445. Figure 4 presents the results of

3Z-score normalization transforms data to a standard scale with a mean of zero and a
standard deviation of one.
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the process of dividing these time series into daily segments and
applying Z-score normalization.

Table 3: Summary of notation.

Symbol Definition

P a selected set of traffic properties
𝑓 sampling rate

𝑇
Length of analysis interval
(total number of observations)

𝑁 number of time series segments

𝑏
Segment length
(observations per segment)

XT
p raw time series observations

X̂𝑛
𝑝

𝑛th normalized segment derived from
time series of traffic property 𝑝

𝑤 DTW warp-width (as a fraction of 𝑏)

D(X̂𝑖
𝑝 , X̂

𝑗
𝑝 ,𝑤)

DTW function computed over
segments X̂𝑖

𝑝 ,X̂
𝑗
𝑝 with warp-width𝑤

3.2 Computing DarkSim matrices
After preprocessing segments, the analytic core of DarkSim com-
pares them using DTW. For each pair of segments from |P| unique
time series, DarkSim computes a dissimilarity score (a zero score
indicates identical segments4) and arranges scores into a Full-
Dissimilarity Matrix (Full-DM). This matrix (M in Equation 1)
is further partitioned into submatrices (𝑚𝑝𝑎,𝑝𝑏 in Equation 2) that
contain scores between all of the segments belonging to two time
series (XT

pa , X
T
pb ).

M =


𝑚𝑝1,𝑝1 . . . 𝑚𝑝1,𝑝 |P|
.
.
.

. . .
.
.
.

𝑚𝑝 |P|,𝑝1 . . . 𝑚𝑝 |P|,𝑝 |P|

 (1)

𝑚𝑝𝑎,𝑝𝑏 =


D(X1

𝑝𝑎
,X1

𝑝𝑏
,𝑤) . . . D(X1

𝑝𝑎
,X𝑁

𝑝𝑏
,𝑤)

.

.

.
. . .

.

.

.

D(X𝑁
𝑝𝑎
,X1

𝑝𝑏
,𝑤) . . . D(X𝑁

𝑝𝑎
,X𝑁

𝑝𝑏
,𝑤)

 (2)

We explain the significance of different types of submatrices in
the following lines.
• Self-Dissimilarity Submatrix (Self-DM): M’s diagonal
submatrices (Equation 1, highlighted in pink) contain com-
parisons between segments of the same traffic property.
• Cross-Dissimilarity Submatrix (Cross-DM): M’s non-
diagonal submatrices (Equation 1, highlighted in blue) con-
tain comparisons between segments of different traffic prop-
erties.

4Though both are theoretically unbounded from above, the Euclidean Distance (ED)
between two segments empirically bounds their DTW score.

• Co-Dissimilarity Submatrix (Co-DM): Assembled by se-
lecting the 𝑖-th diagonal score across all cross-DMs, these
submatrices contain comparisons between contemporane-
ous segments from |𝑃 | unique time series.
• SearchMatrix:Consists of scores that compare one segment
to many segments across time and traffic properties.

In practice, we compute only a portion of matrix scores. In self-
DMs, we skip comparisons between a segment and itself.5 As DTW
is commutative6 and submatrices𝑚 are symmetric, we only com-
pute lower-half scores. We present only these scores in the remain-
der of this paper for visual conciseness.
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Figure 5: Heatmaps of various submatrices and their corre-
sponding score distributions that show the characteristics of
one-off anomalies (5a, 5b), repeated anomalies (5c, 5d), and
concurrent anomalies (5e, 5f).
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3.3 Detecting anomalies from DarkSim matrices
DarkSim leverages empirical distributions of dissimilarity scores
from submatrices to identify various anomalies. The primary types
of anomalies detected include (1) One-off Anomalies, (2) Repeated
Anomalies, and (3) Concurrent Anomalies, as illustrated in Figure 5.
We detail specific characteristics of each type and demonstrate how
they manifest within our score matrices.

(1) One-off Anomalies occur as singular, unusual events within
the dataset and produce high scores due to their high dissimilar-
ity with common segment patterns. Figure 5a depicts examples
of this anomaly (blue continuous lines) in San Marino’s Self-
DM. These anomalies correspond to scores greater than 25 in
Figure 5b.

(2) Repeated Anomalies occur multiple times across the dataset
and produce low scores with irregular patterns among them-
selves. Figure 5c shows these anomalies (bright yellow cells) in
Bermuda’s Self-DM. These anomalies correspond to the tail of
low-scores in Figure 5d.

(3) Concurrent Anomalies appear in contemporaneous segments
from time series of different traffic properties and can surface
as either one-off or repeated anomalies. Figure 5e shows an
example of the latter case as spatially clustered low scores
(dull yellow), representing rare pattern occurences at the same
time across multiple data streams. Though not as distinct as
Bermuda’s, scores below 10 correspond to these anomalies in
Figure 5f.

DarkSim applies median filtering to identify one-off, repeated,
and concurrent anomalies in potentially non-normal score distri-
butions. We use a conventional threshold of 3x the median abso-
lute deviation (MAD) of a distribution to extract outlying scores,
marking their segments for further investigation. In §5.1.3, we use a
score of an expected pattern match as a threshold to detect repeated
anomalies in search matrices. We adopt different approaches in our
benchmarks with DarkGLASSO (§4).

To detect concurrent anomalies across time, DarkSim computes
the Wasserstein Distance (WD) [46, 63, 77] between score distribu-
tions of two co-DMs. The WD provides an aggregated measure of
dissimilarity between all pairwise DTW scores represented in these
distributions, enabling identification of time periods corresponding
to significant shifts in scores due to the appearance of anomalies.
In §5.1 and §5.2, we identify outlying WDs using a specific type
of median filter, the Hampel Filter [30], parameterized using a 3x
MAD threshold over sliding windows of size 7.

4 EVALUATION
We evaluate DarkSim’s ability to detect scanning events under un-
supervised settings. Our evaluation compares and contrasts Dark-
Sim with recently published work, DarkGLASSO [31, 32], a recent
framework based on the GLASSO algorithm. Our rationale behind
benchmarkingDarkSim against this framework is that both method-
ologies aim to identify similarities from the time series of IBR that
indicate potential anomalous activity.

Table 4: Parameter values whose combinations we evaluated
in our sensitivity analysis.

Parameter Values

𝑏 15, 15, 30, 60, 180, 720, 1440
_ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
𝑤 0, 0.5, 1.0

4.1 Implementation
To ensure a fair performance assessment, we align DarkSim’s im-
plementation and our replication of DarkGLASSO to use a standard
programming language and deploy their implementations in the
same computational environment. We implement DarkSim using
Cython bindings from DTAIDistance [52] to compute DTW scores
from segments stored in memory. We re-implement DarkGLASSO,
originally written in R [33], in Python using skggm [49]. skggm
implements the QUIC algorithm [36], a more performant version
of GLASSO. Our evaluation of both frameworks entail offline batch
processing of time series on San Diego Supercomputer Center’s
Expanse [71] cluster. We leverage a single node on the cluster, utiliz-
ing 128 physical cores of its AMD EPYC 7742 processor to schedule
application-level tasks. Although these frameworks do not strictly
require parallelism, the high number of individual time series an-
alyzed in our evaluation justifies the use of a high-performance
computing (HPC) environment.

4.2 Evaluation setup
We perform a sensitivity analysis over both methods’ parameters
and compare their outputs to assess individual and relative detection
efficacy. In this section, we provide details on the input dataset,
outputs we compared, and each method’s varied parameterizations.

Darknet time series dataset. We select 128 unique time series
(|P| = 128) from one month of darknet data collected between June
1 to June 30, 2023. Each time series consists of per-minute unique
sender IP address counts observed for a single port among the
128 TCP destination ports with the highest packet counts over the
month.

Method Outputs. Both methods produce matrices that require
transformations to ensure their comparability. DarkSim computes
co-DMs which we transform into co-similarity (co-SM) matrices by
converting dissimilarity to similarity scores (see Appendix B.2) be-
fore comparing against DarkGLASSO’s outputs. Conversely, Dark-
GLASSO first computes covariance (Σ) and correlation (𝑅) matrices.
From these matrices, it then estimates inverse covariance (Σ−1) and
inverse correlation (𝑅−1) matrices that identify conditionally de-
pendent segment pairs. Our analysis focuses exclusively on the
negative elements (Σ−1− and 𝑅−1− ) of inverse matrices as they reflect
positive conditional dependence, akin to high similarity.

Method Parameters. We conduct a grid search over the parame-
ters (Table 4) of DarkSim and DarkGLASSO. Both frameworks share
the segment length parameter, 𝑏, which we evaluate using eight dif-
ferent lengths (denoted as the number of per-minute samples). For
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DarkSim, we also examine the sensitivity of its results to the warp-
width parameter (§2.4.1) by testing three values,𝑤 ∈ {0, 0.5, 1} that
cover the entire range of possible values [0, 1]. Conversely, Dark-
GLASSO applies a regularization penalty, _, to empirical covariance
Σ and correlation 𝑅 matrices. We test nine different values of _,
consistent with those used by Han et al. [31, 32].

4.3 Comparing detection discriminability
To compare the detection discriminability of both frameworks, we
assess the variability in 𝐿1-norms of each method’s output matrices.
This variability implies a method’s ability to broadly discriminate,
absent of labels, between time periods presumably containing out-
liers versus typical cases.

We first execute both approaches over June’s time series using
combinations of parameters 𝑏, 𝑤 , or _, to obtain sets of matrices.
For each matrix within a set, we calculate its 𝐿1-norm, which sum-
marizes all pairwise relationships for its corresponding time period.
For a set of norms, we compute its Inter-Quartile Range (IQR),
further normalized by its range to account for scale differences be-
tween both framework’s matrices. Thus for a specific method and
its choice of parameter values, a higher normalized IQR indicates
stronger discriminability between windowed time periods. We note
that the scope of our assessment does not assess variability within
individual matrices.

DarkSim’s results (Figure 6a) revealed two trends: (1) longer
segments produced more variable 𝐿1-norms; (2) maximal variability
for most segment lengths occurred under a zero warp-width (i.e.,
𝑤 = 0). The latter trend suggests that applying DTW’s temporal
alignment to short segments (𝑏 < 1440) can hamper discriminability.
However for day-long segments specifically, a full-width alignment
(𝑏 = 1440,𝑤 = 1) enabled DarkSim to outperform DarkGLASSO’s
parameterizations.

DarkGLASSO’s results (Figure 6b,6c) indicated an unclear rela-
tionship between parameters and variability. For Σ−1− (Figure 6b),
notable variabilities occurred at lengths 𝑏 ∈ {5, 15} combined with
weak penalizers _ ∈ {0.1}. For 𝑅−1− (Figure 6c), notable lengths were
𝑏 ∈ {60, 360} combined with mid-range _ > 0.5 penalizers. Sensi-
tivity to temporal noise could explain decreased discriminability
for weaker performing lengths.
Takeaway: Except at day-long segment lengths, DarkGLASSO ma-
trices showcased overall higher variabilities than co-SMs, thus sug-
gesting better discriminability. However, as we show in §4.4, seg-
ment pairs detected in these matrices are not necessarily accurate.

4.4 Comparing detection accuracy
To compare detection accuracy, we sample the most notable time
series segment pairs detected by each method and inspect them
for the presence of shared anomalous patterns. Using these detec-
tions, we assess precision and relative overlap for each framework.
Though this does not provide a complete profile of detection ac-
curacy, i.e., we do not evaluate negative classes due to a lack of
comprehensive ground truth, the two measures nonetheless reflect
real-world framework performance on traffic data consisting of
events unknown a priori.

4.4.1 Selecting candidate segment pairs. We select candidate seg-
ment pairs from DarkSim and DarkGLASSO’s matrices indicated as

Table 5: Precision and relative overlap of DarkSim and Dark-
GLASSO’s detections (computed from Tab. 10, Tab. 11 of
Appx. C). DarkSim achieved higher degrees of precision and
overlap.

𝑏

DarkSim DarkGLASSO
Co-SM Σ−1− 𝑅−1−

Prec. Overlap Prec. Overlap Prec. Overlap
Σ−1− 𝑅−1− Co-SM Co-SM

5 100 0 25 33.3 66.7 33.3 66.7
15 100 25 85.7 26.7 0 46.7 13.3
30 100 16.7 75 40 13.3 26.7 13.3
60 100 70 80 66.7 0 73.3 26.7
180 100 100 100 40 0 66.7 60
360 100 71.4 72.7 46.7 0 73.3 26.7
720 100 87.5 100 53.3 13.3 53.3 66.7
1440 100 50 66.7 40 0 60 53.3

high-confidence detections. Per segment length, we identify values
of the method-specific parameters that maximized score variability
(parameters circled in red in Figure 6). For each matrix type, we
select five matrices with the highest norms, totaling 120 candidate
matrices (= 3 types × 8 segment lengths × 5). From each candidate
matrix, we then identify indices of the top-3 highest valued ele-
ments and locate their pairs of original time series segments. This
process results in 360 total (= 120 × 3) candidate segment pairs for
inspection.

4.4.2 Assessing segment pairs for anomalies. We manually classify
times series segment pairs based on their shared pattern character-
istics (Figure 7) into three groups—Group A, B and C. Segments in
Group A pairs share clear and distinct patterns/trends (Figure 9a).
Group B segments likewise share patterns and trends, though of
less obvious commonalities (Figure 9b). We count pairs in both of
these groups as true positives. In contrast, Group C segments lack
clear pattern/trend similarities (Figure 7c), which we count as false
positives.

4.4.3 Comparing precision. From group assignment counts (Ta-
ble 10 of Appendix C), we compute precision values (Table 5) per
segment length for each type of matrix. DarkSim’s detections re-
sulted in 100% precision across all segment lengths as we found
distinctive shared patterns (Group A) in all segment pairs we ex-
amined. In contrast, DarkGLASSO’s detections for both types of
inverse matrices resulted in overall lower precision (roughly 43.3%
and 52.5% averaged across all segment lengths for Σ−1and 𝑅−1,
respectively). We note that for both matrices, segment lengths less
than an hour produced notably lower precision. We suspect that
noisy observations likely affect the accuracy of covariance and cor-
relation measures more for shorter lengths than for longer lengths,
translating to lower true positive and higher false positive counts
in their inverse matrices.

4.4.4 Comparing relative overlap. We calculate the relative overlap
in true positives at each choice of segment length for both frame-
works (Table 5). In Σ−1 and 𝑅−1, we consider non-zero elements,
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(a) Co-SMs (DarkSim): Variability increased
with segment length. Non-zero 𝑤 maxi-
mized variability at 𝑏 = 1440.
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(b) Σ−1− (DarkGLASSO): Notable variabilities
at tail lengths 𝑏∈{5, 15, 1440} with weak pe-
nalizers _.
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(c) 𝑅−1− (DarkGLASSO): Variabilities in-
creased with segment length up to 𝑏 = 360.
Its trend with _ was unclear.

Figure 6: DarkGLASSO showcased greater detection discriminability (as measured by variability in matrix 𝐿1-norms) except for
day-long 𝑏 = 1440 segments. However, our comparison of detection accuracy (§4.4) indicated not all segment pairs detected in
these matrices (produced from parameters circled in red) are true positives.
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(a) Group A: TCP/84 and 85’s day-long (𝑏 =

1440) segments identified from DarkSim co-
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(b) Group B: TCP/10001 and 993’s 30-
minute (𝑏 = 30) segments identified from
𝑅−1matrices share similar overall trends.
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(c) Group C: TCP/15000 and 993’s 12-
hour (𝑏 = 720) segments identified from
𝑅−1matrices lacked notable shared charac-
teristics.

Figure 7: Examples of detected segments’ qualitative characteristics used for group assignment.

regardless of scale, as detections. In co-SMs, we consider detections
as elements with a similarity score above the 90th percentile for a
specific matrix. We also evaluate the 50th percentile as a threshold,
i.e. we include less similar segment pairs as overlap candidates
(Table 11 of Appendix C).

For DarkGLASSO, Σ−1 missed a majority of co-SM detections
(overlap of 4% across all segment lengths). 𝑅−1detected a higher
proportion (33%), the highest counts at lengths 𝑏 ∈ {180, 720, 1440}.
Both missed several key events: (1) a defensive scan conducted by
AlphaStrike over ports TCP/27017 and 8085 (Figure 16a of Appen-
dix C); (2) a potential coordinated scan by at least 4 ASes (Figure 9a);
(3) a 30-minute outage that saw disconnectivity in nearly 2000 ASes
(Figure 16b of Appendix C).

For DarkSim, a 90th percentile threshold resulted in an overlap
of 31 of 52 (59%) with Σ−1and 50 of 63 (79%) with 𝑅−1. Missed
detections each showcased short-lived concurrent drops in sender
counts obscured by noisy segment portions. At the 50th percentile
threshold, overlaps increased to 44 of 52 (84%) and 61 of 63 (96%),
indicating DarkSim in fact detected a majority of DarkGLASSO’s
detections but ranked them weaker in similarity against its other
detections.
Takeaway: DarkSim showcased perfect precision and detected 70%
up to 91% of DarkGLASSO’s detections (combined across all trialed

segment lengths), missing patterns of short-lived drops. In contrast,
DarkGLASSO achieved a maximum of 73.3% precision and detected
at most 37.5% of DarkSim’s detections, missing events including
reconnaissance by a defensive scanner, an extended outage, and
potential coordinated scan by several ASes.

4.5 Comparing computational performance
To compare computational performance, wemeasure the wall-times
taken by each method’s parallel implementation to analyze June’s
time series (Figure 8). We omitted runtimes for DarkSim co-DM to
co-SM conversion and DarkGLASSO’s computation of Σ and 𝑅 as
they were negligible. Times to generate historical time series from
packet captures were equal for both algorithms. Theoretical time
complexity of DarkSim and DarkGLASSO are 𝑂 (𝑁 · 𝑝2 · 𝑏2) and
𝑂 (𝑁 · 𝐾 · 𝑝3), respectively, further explained in Appendix C.1.

4.5.1 Effects of segment length on runtime. Across all matrix types,
longer choices of segments yielded lower wall-times. For Dark-
GLASSO, wall-times decreased at a linear rate with respect to seg-
ment length. In contrast, DarkSim’s wall-times plateaued beyond
1-hour lengths (𝑏 = 60).

Times to compute a single 5-minute period’s matrix were approx-
imately 0.015, 0.36, and 0.175 seconds (avg. wall-time divided by 𝑁
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Figure 8: Wall-times to compute (in parallel) method-specific
matrices across varied parameterizations.

from Table 6) for co-SM, Σ−1, and 𝑅−1 respectively. At this length,
co-SM computation was roughly 2.4x and 11.6x faster than Σ−1

and 𝑅−1 computation. At 𝑏 = 1440, DarkGLASSO outperformed
DarkSim (respective times for each matrix type were 1.716, 0.048,
and 0.21 seconds).

Table 6: Wall-times averaged across method-specific parame-
ters to compute each matrix type.

𝑁 𝑏
DarkSim DarkGLASSO
Co-SM Σ−1 𝑅−1

Time (sec.) Time (sec.) Time (sec.)

8640 5 131.13 312.15 1514.74
2880 15 75.57 108.97 426.35
1440 30 61.80 51.94 231.01
720 60 54.71 26.38 127.17
240 180 49.12 9.03 45.77
120 360 48.61 4.82 24.52
60 720 48.94 2.54 13.52
30 1440 51.48 1.46 6.31

4.5.2 Effects of method-specific parameters on runtime. Effects of
method-specific parameters on runtimes aligned with our expec-
tations. For DarkSim, use of non-zero warp-widths 𝑤 increased
runtimes for each segment length. However, these increases were
insignificant as our implementation parallelizes matrix computa-
tion. The maximum increase occurred at 𝑏 = 1440, where the
runtime for 𝑤 = 1 was 11.3%, or 5.47 seconds, higher than for
𝑤 = 0.

For DarkGLASSO, use of larger penalties _ resulted in lower
runtimes to estimate Σ−1 and 𝑅−1. We note that _’s runtime effects
were less significant for Σ−1 than 𝑅−1. The maximum speedup
_ = 0.9 offered over _ = 0.1 was 4.2x for the former, 71x for the
latter due to the conditioning of Σ and 𝑅.
Takeaway: Both DarkSim and DarkGLASSO’s runtimes decreased
with larger choices of segment lengths. Despite DarkGLASSO’s
performance improvements that outpaced DarkSim’s, its outputs
lacked DarkSim’s perfect precision (§4.4.3).

5 CASE STUDIES
We present two case studies to demonstrate the capabilities of
DarkSim. The first case (§5.1) leveraged fingerprints to quickly
identify similar events from many time series. The second case
(§5.2) appliedDarkSim to detect short-lived, high-intensity scanning
sourced from a single country.

5.1 Detecting anomalous events after public
vulnerability disclosure

Using DarkSim, we analyzed traffic across a two-month timeframe
around the release of CommonVulnerabilities and Exposures (CVEs)
reported in Microsoft’s February 2023 Patch Tuesday. Our frame-
work detected patterns of abnormal traffic events in 12/14 ports
associated with newly reported vulnerabilities. We further assessed
the prevalence of this pattern over an extended 18-month timeframe
and identified similar events matched on over 1,600 additional TCP
destination ports. Characterization of a subset of these events re-
vealed two groups of networks that repeatedly conducted scans
targeting ports of known vulnerabilities.

5.1.1 Microsoft’s Patch Tuesday. Public disclosure of vulnerabil-
ities as CVEs often triggers Internet-wide scanning observed by
network telescopes. For some vulnerabilities, scanning activity re-
lated to their exploitation occurs even before their CVE reports and
patches are released [67].

On February 14, 2023, as part of its regular software updates,
Microsoft released a series of patches to address 75 CVEs [75],
including three high-severity Remote Code Execution (RCE) vul-
nerabilities [53–55]. Our analysis focuses on the 14 TCP destination
ports (denoted as TCP/<port>) associated with these three major
vulnerabilities listed in Table 7).

Table 7: Default TCP ports of applications whose RCE vulner-
abilities were patched by Microsoft’s February 2023 release.
We included 80 and 53 due to their occasional use by mail
exchanges for web traffic.

Vulnerability Application Default TCP Ports

CVE-2023-21803 [55] Microsoft
iSCI Service 860, 3260

CVE-2023-21706 [53] Microsoft
Exchange Server

80, 25, 53, 110,
143, 443, 587,
993, 995, 50636

CVE-2023-21718 [54] Microsoft
SQL Server 1433, 1434

5.1.2 Detecting concurrent anomalies and their pattern templates.
To detect possible changes in traffic activity near the CVE release
date (February 1 to March 31, 2023), we analyzed the 14 ports’ time
series of per-minute unique source IP address counts. We assessed
their time series for the presence of concurrent anomalies in co-DMs
(§3.2) by computing DTW scores using a maximal warp-width from
contemporaneous day-long segments (𝑏 = 1440,𝑤 = 1). We chose
these parameter values since they maximized DTW score variability
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Figure 9: Global decrease reflected in cross-sectional scores of
co-DMs for Feb. 22 and 23, 2023, indicating similar patterns
appearing in 12 ports of the latter day’s segments.
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Figure 10: Concurrent anomalies detected in all ports but
TCP/860 (for the subset pictured) roughly 9 days after high-
severity RCE vulnerabilities were released on Feb. 14, 2023.

in our sensitivity analysis (§4.3). In total, we computed 59 co-DMs
(one per day) each of dimension 14×14.

To measure daily changes across cross-sectional DTW scores,
we calculated WDs between consecutive co-DM score distributions.
Application of a Hampel Filter, using parameter values listed in §3.3,
to these distances detected five outliers: February 23 and 24, March

3, 4, and 16. Figure 9 plots scores of the two matrices responsible
for February 23’s high distance. Further investigation revealed that
February 23 and March 3’s outliers respectively identified the onset
and cessation of concurrent anomalies across twelve of the fourteen
ports selected for our analysis. Figure 10 depicts the anomalous
pattern in four of these ports.

5.1.3 Locating similar events across time with pattern templates.
Having detected anomalous patterns in CVE-related ports, we as-
sessed their prevalence across an extended timeframe spanning 18
months (January 1, 2022-June 30, 2023, totaling 546 days). We also
expanded our analysis to include all 65,536 TCP destination ports’
unique sender IP address count time series. For this event’s pattern
template, we chose a day-long segment belonging to TCP/3260
that occurred on February 24, 2023. We based our choice on the
observation that distinguishing characteristics of the event were
unlikely distorted by the low baseline sender IP address count seen
for this port prior to the event’s occurrence. After scoring our tem-
plate against daily segments across the 18 months, we computed a
65536 × 546 search matrix (§3.2) to detect repeated anomalies.
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Figure 11: Scores of matched segments for the top-10 ports
by match count across our analysis time frame. Notable in-
creases from late 2022 onwards suggest more frequent occur-
rences of similar events.

We filtered for pattern matches using a cutoff score: the median
of scores between segments of TCP/3260 and the 11 ports manu-
ally confirmed to also contain anomalous patterns on February 24.
Figure 19 of Appendix D depicts the quantity of segment matches
by choice of score. Compared to 2022, more matches occurred in
2023, frequently appearing across different ports on the same day
(Figure 11), hinting at the increased prevalence of this particular
type of scanning behavior.

Table 8 summarizes the ten most frequently targeted ports by
their match counts per year. Apart from TCP ports of well-known
services, e.g., 123 (NTP), 554 (RSTP), 161 (SNMP over TCP [42]),
5060 (SIP), we identified several others by their continued and
newly-trending security concerns, e.g., 7170 (NSRP), 10250, 5060,
7170 (various Kubernetes components) [47], and 50001 (IBM Cloud
Orchestrator) [37].
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Table 8: Top-10 TCP ports (and their inferred services) by
match counts for 2022 (365 days) and 2023 (181 days). 2023
showcases services related to cloud deployment in addition
to overall higher match counts.

2022
(Jan. 1 - Dec. 31)

2023
(Jan. 1 - June 31)

Service Port No. Service Port No.

Bittorrent 6881 41 NTP 123 66
8988 38 NSRP 7170 59
60406 33 TR-069 30005 58
1967 22 SNMP 161 56

SIP 5060 22 CPE Mgmt. 8085 55
RSTP 554 22 IBM Cloud Orch. 50001 55
NSRP 7170 20 Kubernetes 2379 54
Thor 28080 20 Kubernetes 10250 52
CPE Mgmt. 8085 20 Kubernetes 6443 52
TR-069 7547 19 Verizon Routers 4567 49

Notably, ports related to known Kubnernetes vulnerabilities [48,
76] appeared in the top-10 ports for 2023. This coincides with re-
ports of increased use of Kubernetes in the cloud [34, 60] and re-
ported campaigns targeting publicly accessible clusters for malware
deployment [4, 5, 18].

5.1.4 Characterizing events of matched patterns. To better char-
acterize the events responsible for these patterns, we conducted
network traffic analysis of matched segments’ time frames and
ports using flow-resolution data (FlowTuple [12], traffic aggregated
into 5 minute-intervals). For each event, we determined: (1) ASes
likely to be responsible for originating abnormal traffic; and (2)
scanning behaviors observed for senders from these networks.

For candidate events, we selected the two lowest-scoring seg-
ments, i.e., most-similar matches, per the top-20 ports by match
count over both years. We included February 24’s segments for the
twelve ports from §5.1.2. Due to missing data, we analyzed only 13
out of 52 total port-day pairs.

To determine ASes likely involved in each event, we compared
sets of unique senders from two 6-hour windows (one capturing
baseline traffic, the other anomalous). We considered ASes whose
unique counts increased at least twofold and by a minimum of 100
as likely originators.

Among events, we detected two groups of ASes. The first group
consisted of 8 ASes (Table 9) that each appeared in all strongmatches
(4/13) whose pattern characteristics matched TCP/3260’s template
near-exactly (i.e., rapid onset of new senders, highly variable peri-
odicity and amplitudes). The second group consisted of only one AS
(AS135377), a cloud-hosting provider in Hong Kong, that produced
weak pattern matches (i.e., slow onset of new senders, sub-hourly
periodicity but stable amplitudes). TCP ports targeted exclusively
by the former group included 25 (SMTP), 2000, 2379 (Kubernetes);
by the latter group: 8009 (Apache Tomcat [64]), 7547 (TR-069) and
by both, though on different days: 1723 (PTPP). These ports have
and continue to be targeted for potential RCE vulnerabilities [17].

Table 9: ASes determined as likely originators of traffic re-
sponsible for TCP/3260’s anomalous pattern (Fig. 10) and its
strong matches (§5.1.4) detected by DarkSim.

ASN
Sibling ASN(s)

No. Unique
Src. IP Address Δ

Baseline Anomaly ≈% Abs.

4847 9 907 9977 898
4837 443 15311 3356 14868
140726, 17621, 17622 48 2118 4412 2070

4134 362 16667 4504 16305
17638 19 435 2189 416

9808 16 158 887 142

22 25 28 211 214 217 220

Packets per Sender
0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

ASN
4847
4837
140726
17621
17622
4134
17638
9808

(a) Baseline 6-hours

22 25 28 211 214 217 220

Packets per Sender
0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

ASN
4847
4837
140726
17621
17622
4134
17638
9808

(b) Anomalous 6-hours

1 32 64 96 128 160 192
Dest. /16 per Sender

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

ASN
4847
4837
140726
17621
17622
4134
17638
9808

(c) Baseline 6-hours

1 32 64 96 128 160 192
Dest. /16 per Sender

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

ASN
4847
4837
140726
17621
17622
4134
17638
9808

(d) Anomalous 6-hours

Figure 12: CDFs of packets per sender (12a,12b) and destina-
tion subnets (12c,12d) of traffic destined to TCP/3260 for 8
source ASNs identified before and during the anomaly on
Feb. 14, 2023. Statistics produced from 5-minute windows
using flow-resolution data.

We observed an increase in unique senders, packet rates per
sender, and the number of unique telescope /16s targeted per sender
for all 8 ASes during strongly matched events. Figure 12 depicts
these changes for the 8 ASes during February 14, 2023’s event, rep-
resentative of the other 12 strong matches. We further found that in-
dividual senders from these ASes targeted subnets non-sequentially
(Figure 17 of Appendix D). The rapid onset of highly similar behav-
iors from several orgin ASes, resulting in the anomalous pattern
signatures DarkSim detected, suggests potentially coordinated cam-
paigns directed towards default ports of known vulnerabilities.
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Takeaway:We applied DarkSim to detect anomalous traffic events
targeting TCP ports of vulnerable applications reported in Mi-
crosoft’s February 2023 Patch Tuesday and further discovered hun-
dreds of historical occurrences. By narrowing the set of candidates,
DarkSim enabled us to selectively perform flow analysis and charac-
terize these events as potentially coordinated scanning originated
repeatedly by a group of the same 8 ASes.

5.2 Needles in a haystack: identifying irregular
high-rate scanning events

For our second case study, we employed DarkSim to uncover the
most severe shifts across country-level packet count time series.
Across a one-year time frame, we discovered repeated scanning
campaigns launched by senders from two ASes.

5.2.1 Identifying country-level concurrent anomalies. We applied
DarkSim with the same parameter values (𝑏 = 1440,𝑤 = 1) as the
previous case study to packet count time series gelocated for 255
countries across 2022. Here, outputs consisted of 364 co-DMs, each
of dimension 255×255. We removed matrices containing invalid
comparisons, i.e., scores between segments missing observations
due to data loss, before computing a total of 342 WDs. Using a Ham-
pel Filter, parameterized by the same values in §5.1.3, we identified
a total of 46 outliers. Appendix D includes a sensitivity analysis
of the MAD threshold. We selected two of the top-5 outliers (Fig-
ure 13) for flow-resolution traffic analysis to further characterize
these events.
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Figure 13: Wasserstein Distances between daily DarkSim co-
DMs. Gaps indicate absent WDs due to missing time series
data. Red encircles Event A and B. Blue encircles 3 additional
events detected by DarkSim, initiated by AS202425.

5.2.2 Characterizing traffic dynamics of irregular events. Using
flow-resolution traffic data, we analyzed events that corresponded
to the WDs that occurred on March 31st (Event A) and November
22 (Event B). Event A consisted of two packet surge episodes on
the same day from source IPs geolocated to the Netherlands (NL)
accompanied by drops from non-NL countries. Event B similarly
consisted of a single packet surge, instead from IPs geolocated to
the US but accompanied by drops from non-US countries. Table 12
of Appendix D lists the traffic statistics we describe in this section.

As baselinemeasures, we used trafficmetrics of the 20/30-minutes
prior to Event A/B. During Event A’s two episodes (I, II), the total
packet counts increased 132.9% and 96.9% from baseline, a majority
sent by NL-geolocated sources (55.5% and 55.6% of total packets,
up from 11.5%), specifically by AS202425 (97.7% and 97.3% of NL’s
packets). In both episodes, the count of unique source IPs from this
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Figure 14: November 22nd’s anomaly (Event B) that consisted
of an inversion in packet counts between US and non-US
countries. Two episodes (I, II) onMarch 31st (Event A) showed
a similar inversion in packet counts but between NL and non-
NL countries.

AS did not change significantly, implying an increase in the number
of packets sent from each sender. We found that AS202425 was also
responsible for an additional 3 events, which also showcased NL
packet count surges and non-NL drops, among the top-10 WDs
(blue in Figure 13).

During Event B, the total packet counts increased 147.1%, con-
sisting of 75.5% US-originated packets. During the baseline period,
a single AS14987 IP address sent only 32 packets to TCP/179. How-
ever during the event, 156 AS14987 IPs were responsible for 91.2%
and 68.9% of US-originated and of all packet counts, respectively.
Targeted port counts increased to 306 TCP and 101 UDP ports with
nearly all ports receiving roughly 5.8 million packets. Further, we
found that every /16 subnet of UCSD-NT received at least one
packet belonging to AS14987-originated traffic.

Since both ASes are hosting companies with reliable Internet con-
nectivity, we believe this activity resulted from their users launching
high-rate Internet-wide scanning activities. UCSD Network Tele-
scope operators confirmed that the inversions were likely due to
dropped packets caused by high scanning rates of the ASes during
events.
Takeaway: By applying DarkSim to detect concurrent anomalies
from country-level packet count time series, we discovered high-
rate scanning campaigns repeatedly originated by two ASes.

6 DISCUSSION AND FUTUREWORK
We discuss limitations of DarkSim’s approach and identify areas to
improve its evaluation against other methodologies.
Enhancing DarkSim’s detection capabilities Time series met-
rics capturing high amounts of baseline traffic may reduce the
efficacy of DarkSim’s detection mechanism. This baseline noise can
obscure the visibility of low-magnitude anomalies, thus resulting
in normative DTW scores. For example, anomalies detected in the
unique source IP counts for the three TCP destination ports of Fig-
ure 10 would produce negligible change in the counts for a popular
port, e.g., TCP/23 from Figure 2b. One potential solution involves
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disaggregating time series prior to scoring. Using the previous ex-
ample, by considering both the source network of traffic in addition
to TCP/23 as a destination port, we partition a single time series
into its many constituents for comparison. Future work may also
consider other distance measures (e.g., [70]) that aim to filter noise
algorithmically to produce more accurate time series comparisons.
Improving evaluation robustness Exhaustive labeling of IBR
traffic events and their senders remains a resource-intensive task
that seldom attains perfect accuracy. For this reason, we evalu-
ated our framework without a comprehensive set of ground truth
events. This limited our benchmarks of detection accuracy to only
the precision component as we could not evaluate false negative
rates. More generally, this limits analysis of the parameterization of
statistical techniques used for detection. Future evaluations stand
to benefit from high-fidelity event labels that enable researchers to
definitively and precisely profile the classes of events that different
methodologies can detect.
Expanding evaluation scope Our benchmarks in this work fo-
cused on two event detection frameworks that utilize IBR in time
series form. As future work, we will expand the scope of our bench-
marks to a wider range of approaches to better understand their rel-
ative capabilities and tradeoffs. Although results we attained from
evaluating historical time series roughly reflect online performance,
our future benchmarks will include benchmarks in near-realtime
detection settings.

7 RELATEDWORK
Detecting Darknet Events Packet header information, e.g., TCP
or UDP destination ports, TCP flags, TCP sequence numbers, and
TTL values, are commonly used to identify IBR traffic activity. For
example, darknet packet signatures that indicate a response (e.g.,
TCP/ACKs, TCP RSTs, ICMP errors, and DNS responses) result from
DoS attacks originated by randomly-spoofed source IP addresses.
The fixed nature of these signatures have allowed researchers to
apply static rules [58] to infer and characterize backscatter traffic [11,
43]. Other packet signatures, though more transient, have identified
probing tools and botnet populations [3, 74]. However, despite their
efficacy for isolating specific events, filters for these signatures lack
the flexibility to adapt to emergent events.

Prior works have trainedmachine-learningmodels using features
of darknet traffic to classify events. By applying both supervised
and unsupervised algorithms to traffic data, researchers aim to
produce models that identify events by features’ statistical rela-
tionships [8, 9, 26]. Recent approaches combine neural-networks
with unsupervised clustering techniques to detect coordinated scan-
ning in IBR. DarkVec [28] and its predecessors [16, 66] infer ma-
licious darknet sender IP addresses by clustering senders in low-
dimensional representations of Word2Vec [57] generated based on
sender packet co-occurrence. Kallitsis et al. [45] instead use autoen-
coders to reduce the dimensionality of their original feature set
before clustering senders.

8 CONCLUSION
We designed and implemented DarkSim, a top-down analytic frame-
work for detecting anomalies in IBR. Instead of directly processing
raw packets, our framework identifies changes in time series of

traffic metrics by comparing similarities within and across different
time series. To achieve this, DarkSim employs a similarity measure,
Dynamic Time Warping (DTW), and statistical techniques to iden-
tify specific time periods and traffic properties that warrant further
analysis.

We showcased the effectiveness of our framework in our bench-
mark against DarkGLASSO, a recent framework that applies the
GLASSO algorithm to darknet time series. Whereas DarkGLASSO
achieved only a maximum precision of 73.3% and a 37.5% over-
lap with our framework’s detections, DarkSim achieved perfection
precision and a maximum overlap of 91%.

We highlighted DarkSim’s practical utility in two case studies.
Our analyses successfully captured events that targeted ports as-
sociated with new critical vulnerabilities addressed by Microsoft
Patch Tuesday, as well as aggressive scanning activities originating
from hosting companies in the United States and Netherlands.
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A ETHICS
We do not disclose IPv4 addresses responsible for sending the traffic
that we analyzed in our work.

B METHOD ADDENDUMS
B.1 The Dynamic Time Warping Algorithm
The Dynamic Time Warping (DTW) algorithm employs a dynamic
programming approach to quantify the dissimilarity, i.e., optimal
alignment cost, between observations of two time series segments.
A single parameter parameterizes DTW: the warp-width, a con-
straint on the maximal temporal distance between time series ob-
servations used to calculate a score. Two well-known variants exist
for defining the region produced using a specified warp-width: the
Sakoe-Chiba band [68] and Itakura parallelogram [40]. In this paper
we use the former.

(-) 𝑆0 𝑆1 𝑆2 𝑆3

(-) 0 ∞ ∞ ∞ ∞

𝑄0 ∞ 0 16 17 17

𝑄1 ∞ 0 16 17 17

𝑄2 ∞ 16 0 9 25

𝑄3 ∞ 17 9 0 1

𝑄0 𝑄1 𝑄2 𝑄3
1 1 5 2

𝑆0 𝑆1 𝑆2 𝑆3
1 5 2 1

Figure 15: A fully computed DTW cost-matrix (shortest cost
path marked in red) between two time series. Right: Sample
values for 𝑄 and 𝑆 .

While its theoretical computation complexity possesses a qua-
dratic upper-bound, optimized implementations designed for mod-
ern hardware architectures can dramatically reduce its empirical
runtimes [69].

Input: 𝑄0 . . . 𝑄𝑀−1, 𝑆0 . . . 𝑆𝑁−1
Output: Dissimilarity Score

𝐷∈R(𝑀+1)×(𝑁+1) ←cost matrix
𝐷0,0←0
for 𝑖 ← 1 to 𝑁 : 𝐷0,𝑖 = ∞
for 𝑗 ← 1 to𝑀 : 𝐷 𝑗,0 = ∞
for 𝑖 ← 1 to𝑀 do

for 𝑗 ← 1 to 𝑁 do

𝐷𝑖, 𝑗 = 𝑑𝑖𝑠𝑡 (𝑄𝑖 , 𝑆 𝑗 ) +𝑚𝑖𝑛


𝐷𝑖, 𝑗−1
𝐷𝑖−1, 𝑗
𝐷𝑖−1, 𝑗−1

end for
end for
return

√︁
𝐷𝑀,𝑁

B.2 Converting Dissimilarity to Similarity
While optional for most cases, we detail these steps to convert
dissimilarity to similarity scores for analysis that depend on the
semantic meaning of score directionality. Our analysis in §4.2 re-
quires that we use similarity matrices to compare DarkSim against
DarkGLASSO.

𝑠𝑖 𝑗 =
𝑚𝑎𝑥 (�̂�𝑖 ) −𝑚𝑖 𝑗

𝑚𝑎𝑥 (�̂�𝑖 )
,∀𝑖, 𝑗 ∈ {1, . . . , 𝑁 } (3)

Equation 3 summarizes the conversion of a dissimilarity matrix𝑚
to a similarity matrix 𝑠 . From processed segments, we first obtain �̂�,
a dissimilarity matrix consisting of pairwise Euclidean Distances
(ED) (i.e., DTW scores computed using a zero warp-width𝑤 = 0).
We additionally obtain𝑚, the dissimilarity matrix computed using
a specific warp-width value. Each row-wise maximum ED distance
in �̂� represents the empirical upper bound for a given segment [72]
and thus we use these to invert and scale𝑚’s individual scores onto
the continuous range between 0 and 1.
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Table 10: Group assignments of DarkSim and Dark-
GLASSO’s detections (Groups A and B counted as true
positives and Group C as false positives).

𝑏

DarkSim DarkGLASSO
Co-SM Σ−1− 𝑅−1−

TP FP TP FP TP FP

A B C A B C A B C

5 15 0 0 0 5 10 1 3 11
15 15 0 0 0 4 11 3 4 8
30 15 0 0 0 6 9 2 2 11
60 15 0 0 0 10 5 5 5 5
180 15 0 0 0 6 9 9 1 5
360 15 0 0 1 6 8 10 1 4
720 15 0 0 0 8 7 6 2 7
1440 15 0 0 5 1 9 8 1 6

Table 11: Overlap of DarkSim and DarkGLASSO’s detections. 𝑆 ′

denotes the set of detections compared against.

𝑏

DarkSim DarkGLASSO
Co-SM (90th) Co-SM (50th) Σ−1− 𝑅−1−

𝑆 ′ =Σ−1− 𝑆 ′ =𝑅−1− 𝑆 ′ =Σ−1− 𝑆 ′ =𝑅−1− 𝑆 ′ = Co-SM

5 0/5 1/4 3/5 2/4 1/15 1/15
15 2/4 6/7 3/4 7/7 0/15 2/15
30 1/6 3/4 4/6 4/4 2/15 2/15
60 7/10 8/10 10/10 10/10 0/15 4/15
180 6/6 10/10 6/6 10/10 0/15 9/15
360 5/7 8/11 6/7 11/11 0/15 4/15
720 7/8 8/8 8/8 8/8 2/15 10/15
1440 3/6 6/9 4/6 9/9 0/15 8/15
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(a) Increases in unique source IP address counts to ports 27017
and 8085, originating from the IP range belonging to AlphaStrike,
an acknowledged scanner.
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(b) Drops in unique source IP address counts to ports 8080 and 80
(two among nearly 2000).

Figure 16: Notable events missed by DarkGLASSO that were detected by DarkSim.

C EVALUATION ADDENDUMS
Table 10 lists the complete assignment counts forDarkSim andDark-
GLASSO’s detections used to calculate precision. Table 11 shows
detection overlap in fraction form where the denominators are
the true positive counts taken from Table 10. Figure 16 plots two
notable DarkSim detections missed by DarkGLASSO.

C.1 Comparing theoretical time complexity
DarkSim’s time complexity consists of the number of operations to
computeDTWscores for𝑁 co-DMs, each containing 𝑝 (𝑝−1)

2 unique
scores. Since computation of a single score is bounded by 𝑂 (𝑏2)

operations, the combined bound for an entire analysis workload is
𝑂 (𝑁 · 𝑝2 · 𝑏2) (unchanged by co-SM conversion).

DarkGLASSO’s time complexity to estimate either type of in-
verse matrix combines the number of operations from two steps: 1)
computation of either Σ or 𝑅; and 2) the optimization procedure of
GLASSO. For an entire analysis workload, the first step is bounded
by 𝑂 (𝑁 · 𝑝2 · 𝑏) operations, similar to DarkSim’s time complex-
ity except that pairwise covariance/correlation computes in linear
time. The second step applies GLASSO’s optimization procedure
per matrix. Each matrix requires a variable number of iterations, 𝐾 ,
to reach a stopping condition (larger _ penalities generally reduce
this number). Each iteration entails 𝑂 (𝑝3) operations. The overall
bound for a workload is 𝑂 (𝑁 · 𝐾 · 𝑝3).
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Table 12: Overview of traffic metrics before and during concurrent anomalies of Mar. 31st (Event A) and Nov. 22 (Event B).

Event Time Interval (UTC) Source Packet Uniq. Src. IP Uniq. Dest. Port
Counts Counts Counts (by AS)

Country AS Total Country AS Total Country AS TCP UDP

A
Baseline 2022-03-31 13:20-13:50 NL 202425 1.97e9 2.38e8 1.76e8 1.91e6 2534 59 2102 71
Anomaly I 2022-03-31 13:50-14:25 NL 202425 3.70e9 1.94e9 1.72e9 1.93e6 2726 55 2245 69
Anomaly II 2022-03-31 14:45-15:15 NL 202425 3.44e9 1.72e9 1.66e9 1.53e6 2664 55 2278 69

B Baseline 2022-11-22 20:45-21:05 US 14987 1.22e9 2.52e7 32 5.4e5 2.2e4 1 1 0
Anomaly 2022-11-22 21:05-21:25 US 14987 3.03e9 2.29e9 2.08e9 5.01e5 1.8e4 156 306 101
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Figure 17: Scanning strategy for 3 ASes each partially responsible for anomalous activity to TCP/3260 (§5.1.4) revealed by
sequences of /16 UCSD-NT subnets that received at least 1 packet from source IPs for a given AS.

D CASE STUDY ADDENDUMS
For §5.1, Figure 17 depicts the scanning strategy observed for ASes
responsible for the anomalous patterns of Figure 10 for TCP/3260.
We produce these results by analyzing flow-resolution (FlowTu-
ple [12]) traffic data, inspecting the sequence of /16 subnets of
UCSD-NT targeted by individual senders belonging to AS networks
responsible for the anomalies. For §5.1.3, we supplement match
analysis with an assessment of score threshold choice on unique
ports matched (out of 65536 possible TCP ports) and unique days
matched (out of 546). The CDFs in Figure 19 provide a rough ap-
proximation of the quantity of total positives though we did not
fully assess the accuracy of matches.

For §5.2.1, we assess the proportion of total WDs identified as
outliers (out of 542) based on the MAD multiplier used in the Ham-
pel Filter (Figure 18).
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Figure 18: Proportion of WDs identified as outliers based on
MAD threshold (§5.2.1).

1 10 25 50 75 100
Score Threshold

(Percentile)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 M

at
ch

ed
(o

f T
ot

al
 T

CP
 D

es
t. 

Po
rts

)

0

10000

20000

30000

40000

50000

60000

M
at

ch
ed

 C
ou

nt
(T

CP
 D

es
t. 

Po
rts

)
(a)

1 10 25 50 75 100
Score Threshold

(Percentile)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 M

at
ch

ed
(o

f T
ot

al
 D

ay
s)

0

100

200

300

400

500

M
at

ch
ed

 C
ou

nt
(D

ay
s)

(b)

Figure 19: Search matrix match counts by score threshold
(§5.1.3).
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