
Jitterbug: A new framework for jitter-based
congestion inference

Esteban Carisimo1, Ricky K. P. Mok2, David D. Clark3, and kc claffy2

1 Northwestern University {esteban.carisimo}@northwestern.edu
2 CAIDA, UC San Diego {cskpmok, kc}@caida.org

3 MIT {ddc}@csail.mit.edu

Abstract. We investigate a novel approach to the use of jitter to infer
network congestion using data collected by probes in access networks.
We discovered a set of features in jitter and jitter dispersion —a jitter-
derived time series we define in this paper— time series that are char-
acteristic of periods of congestion. We leverage these concepts to create
a jitter-based congestion inference framework that we call Jitterbug. We
apply Jitterbug’s capabilities to a wide range of traffic scenarios and
discover that Jitterbug can correctly identify both recurrent and one-off
congestion events. We validate Jitterbug inferences against state-of-the-
art autocorrelation-based inferences of recurrent congestion. We find that
the two approaches have strong congruity in their inferences, but Jitter-
bug holds promise for detecting one-off as well as recurrent congestion.
We identify several future directions for this research including lever-
aging ML/AI techniques to optimize performance and accuracy of this
approach in operational settings.

1 Introduction

The general notion of network congestion – demand exceeds capacity for network
(link capacity or router buffer) resources – is widespread on the Internet, and
an inherent property of traditional TCP dynamics. A TCP connection endpoint
induces congestion to infer its appropriate sending rate, increasing this rate until
it fails to receive acknowledgement of receipt of a packet by the other endpoint,
i.e., infers congestion based on packet loss [19]. More recent attempts to improve
TCP’s congestion control algorithms rely on increased latency rather than packet
loss as a signal of congestion [22,7,8,35].

Outside of protocol dynamics, latency and loss are still the fundamental
metrics used to detect episodes of network congestion, or more generally path
anomalies that degrade performance [13,14,30,17,12,15]. Although researchers
have developed autocorrelation techniques to infer persistent recurrent patterns
congestion [12], the challenge of detecting one-off episodes of congestion in traf-
fic data remains an open problem after 30 years of Internet evolution. One-off
episodes of congestion have many causes, including traffic management tran-
sitions, router operating system overheads, network configuration errors, flash
crowds (e.g., software releases), and DDoS attacks. Inferring congestion from

2 Carisimo et al.

these phenomenological events is still an open challenge for the research network
community.

We propose a new framework – Jitterbug – to use jitter and other metrics de-
rived from round-trip-time (RTT) measurements to infer congestion. RTT mea-
surements alone are often insufficient to infer congestion episodes, but we found
that jitter-related metrics can distinguish congestion from other path anomalies,
e.g., route changes. Specifically, we identify a correlation between periods of el-
evated latency (minimum RTT) and changes in the profile of jitter signatures
– jitter dispersion – during congestion episodes. Relying on this concept, we
develop a new framework that allows us to extend interdomain congestion infer-
ences from recurrent patterns to one-off congestion events, i.e., discern recurrent
from one-time congestion events. Using data collected between 2017 and 2020,
this novel approach obtains similar results to state-of-the-art autocorrelation-
based methods [12], but overcomes the limitation of the autocorrelation meth-
ods that can only detect recurrent periodic patterns of congestion. We find that
Jitterbug introduces a promising approach to detect one-off congestion events.
Our contributions are:

1. We identified a set of features in jitter and jitter dispersion time series,
including a change of regime or transitory increase of the jitter dispersion,
that characterize periods of congestion.

2. We used these features to develop and implement Jitterbug, a new jitter-
based congestion inference method that combines pre-existing approaches to
change point detection with information embedded in jitter signals.

3. We applied the Jitterbug framework to a wide range of challenging traffic
scenarios, and explain its inferences.

4. We compare Jitterbug congestion inferences to the state-of-the-art autocorrelation-
based methods [12], finding strong consistency in autocorrelation-applicable
scenarios, i.e., for recurrent periodic congestion.

5. We release the source of code of Jitterbug4.

The rest of the paper is structured as follows. We provide context by describ-
ing the latency model (§2.1) and jitter signatures in multiple real-world examples
(§2.2). Leveraging these concepts, §3 describes Jitterbug and its components in
detail. §4 describes the dataset we use to (i) investigate Jitterbug congestion
inferences in different scenarios (§5), and (ii) cross-validate Jitterbug congestion
inferences against other methods (§6). §7 summarizes lessons we learned during
our study. §8 provides an extensive list of related work and §9 discusses open
challenges in congestion inference. Finally, §10 offers concluding thoughts.

2 Background on RTT and Jitter Signatures

To provide context, we describe the latency model (§2.1) and four typical signa-
tures we extract from RTTs and jitter (§2.2).

4 Jitterbug repository: https://github.com/estcarisimo/jitterbug

https://github.com/estcarisimo/jitterbug

Jitterbug: A new framework for jitter-based congestion inference 3

2.1 Latency model

Round-trip time (RTT) in end-to-end measurements comprises both determin-
istic and random components. Eqn. (1) depicts the components of RTT between
source (u) and destination (v) for a packet traversing a total of H hops in the
round-trip path [21].

RTT (u, v) = dicmp +

H∑
i=0

(ds(i) + dprop(i) + dq(i) + dproc(i)), (1)

where dicmp is the processing delay of ICMP messages in routers. ds, dprop,
and dproc represent delay induced by serialization, propagation, and packet pro-
cessing, respectively. These deterministic components do not depend on traffic
volume or link utilization. In contrast, dicmp and dq are random variables and
contribute RTT variance, because their values depend on router CPU utiliza-
tion and queue size of network interfaces when packets arrive. Prior work [23,12]
has shown that RTT correlates with bottleneck link utilization, indicating that
the queuing delay is the dominant factor in delay variation. Delay jitter, also
referred to as jitter or IP packet delay variation [10], is the absolute difference
between the current RTT value and the reference value of the previous time
episode (i.e., JT = RTT (u, v)T − RTT (u, v)T−1), where T is the current time
episode. In this work we develop and evaluate a framework for using simple RTT
and jitter-based metrics to classify path anomalies.

2.2 Analyzing RTT and jitter signatures in congested links

We use four real-world examples to illustrate the challenges and opportunities of
using RTT and jitter to detect and identify path anomalies (Fig. 1). We focus on
three properties of RTT and jitter to characterize the nature of path anomalies:
periodicity, amplitude, variability.

Periodicity captures events that recur at a fixed frequency and duration, such
as diurnal variations.

Amplitude measures the degree of changes in RTTs from the baseline. During
network congestion events, probe packets are more likely to experience queu-
ing delay. The elevation of RTTs reflects the queue size in the bottleneck link.

Variability refers to the stability of RTTs during the elevated periods, which
allows us to discern congestion from other path anomalies such as a route
change.

Fig. 1 shows four examples of two-week RTT and jitter time series measured
from four vantage points in the U.S. to four router interfaces on the far-side5

of interdomain links. Two examples (Fig. 1a and 1b) show periodic inflation
in RTTs (blue/orange curves), indicating recurring congestion events. However,

5 We referred as near and far sides to consecutive IP pairs in a traceroute path fol-
lowing the convention defined by Luckie et al. [23].

4 Carisimo et al.

the jitter amplitude (green curve) in Fig. 1b, is much lower than that of Fig. 1a,
consistent with a smaller queue size in the bottleneck link. Previous use of auto-
correlation methods have shown that such persistent diurnal elevations in RTT
at the far-side of an interdomain are evidence of interdomain congestion [12].
In contrast, the two cases in Fig. 1c and 1d are one-off events. The interesting
difference is that in Fig. 1d the jitter increases as the RTT baseline jumps from
20ms to 40ms. In contrast, in Fig. 1c the jitter remains stable throughout. We
suspect that this latter scenario was a route change event rather than congestion.

Although many different approaches to RTT change point detection could
partition these time series into intervals, an approach solely based on RTTs would
fail to distinguish congestion from other path anomalies such as route changes.
The RTT signal is simply too noisy. This example shows that evaluating changes
in jitter can enable us to differentiate these scenarios and thus we should consider
jitter as a metric for characterizing path anomalies.

We next introduce our framework to support systematic analysis and clas-
sification of type of path anomalies with three properties that we extract from
RTT and jitter time series data.

3 Jitterbug: Jitter-based congestion inference

Fig. 2 shows the building blocks of our framework, which combines change point
detection algorithms (§3.2) with simultaneous analysis of minimum RTT and
jitter time series obtained from latency measurements. The change point detec-
tion algorithm splits RTT timeseries into candidate time intervals that might
suffer from congestion. The next step of the framework is to analyze the jitter
in each time interval to classify candidate intervals as congestion events or other
path anomalies. We infer congestion based on the three elements we observed
in §2.2: changes in baseline RTT, increase of jitter amplitude, and increase of
jitter dispersion during a phase transition. We developed two different statistical
methods for this analysis–(i) KS-test method, and (ii) jitter dispersion method
(JD). The first combines detection of changes on RTT latency baseline with the
Kolmogorov-Smirnov (KS) test to detect changes in the jitter time series. The
jitter dispersion method (JD) detects a jitter dispersion increase that correlates
with a baseline RTT increases as a signal of congestion. The common goal of
both methods is to objectively capture the signatures in the jitter signals. This
section describes the role of each element of the Jitterbug framework in detail.
We designed Jitterbug to support different RTT data sources, and have applied
it to measurements collected by Ark CAIDA and RIPE Atlas. The current im-
plementation uses a 5-minute and 15-minute granularity for RTT measurements
and the aggregated minimum RTT time-series, respectively.

3.1 Signal filtering

Jitterbug congestion inferences use three signals: (i) min RTT time series, (ii)
jitter, and (iii) jitter dispersion. As we saw in §2.2, raw RTTs can be too noisy

Jitterbug: A new framework for jitter-based congestion inference 5

0

100[m
s] RTT

25
50

[m
s] min

2017/Dec/02 2017/Dec/06 2017/Dec/10 2017/Dec/14
100

0
100

[m
s] jitter

(a) Recurring congestion event. RTTs and
jitter increase during congestion episodes.

50

100

[m
s] RTT

60

80

[m
s] min

2017/Dec/25 2017/Dec/29 2018/Jan/02 2018/Jan/06
50

0
50

[m
s] jitter

(b) Recurring congestion event. Jitter does
not significantly increase during elevated
RTT periods, likely due to small buffer size
in the bottleneck router.

100
200
300

[m
s] RTT

100

200

[m
s] min

2017/Dec/25 2017/Dec/29 2018/Jan/02 2018/Jan/06
200

0
200

[m
s] jitter

(c) One-off non-congestion event on Jan 2.
Jitter remained stable in face of inflated
RTT.

100

200

[m
s] RTT

50

100

[m
s] min

2019/Sep/02 2019/Sep/06 2019/Sep/10 2019/Sep/14
100

0
100

[m
s] jitter

(d) One-off congestion event. Increased
varibility in jitter indicates the occurance
of congestion.

Fig. 1. Typical examples of network events. The raw timeseries (top figures) is the
raw RTT data with 5-minute resolution. We aggregate the raw data into 15-minute
buckets with the minimum function to filter noise (middle figures). We compute jitter
using the 15-minute aggregated data to quantify variability in RTTs (bottom figures).

to yield meaningful signatures. We first aggregate the raw RTT data by selecting
the minimum value in each 15-minute time interval (min time series). The signal
filtering module then computes the jitter using both the raw RTT and min time
series to produce jitter and j-min time series, respectively.

We use two additional filters to better capture the variability in j-min. First,
we apply the Moving IQR filter to the j-min time series, which computes the
inter-quartile range (IQR) of a sliding window of 150 minutes (10 jitter samples).
We define as jitter dispersion to the operation of computing the moving IQR to
a jitter signal.

We then compute the 5-sample moving average of the resultant time series
as the jitter dispersion time series to mitigate the impact of short-term latency
spikes. Fig. 3 shows the correlation between the min RTT time series and the
jitter dispersion of previous examples (Fig. 1). Correlation between the two time
series in Fig. 3c) is low. We believe that the shift of baseline RTT corresponds
to a route change that increased the propagation delay, which is a deterministic
component that induces low variance to RTTs.

6 Carisimo et al.

minRTT RTT
dataset

Jitter computation

Interval Detection
(Change point

detection)Mov. IQR filter

KS test
 Signal energy

comparison

Latency jump

detection

 Combine changes in jitter
 & min time series

MA filter
Jitter

RTT minRTT

Jitter disp.

B

C

D E

A

F
thersholds

Memory

j-min
§3.1

§4

§3.2

§3.3
 §3.4

§3.5

Fig. 2. The Jitterbug framework comprises: (A) data acquisition (B) signal filtering
(C) detection of intervals of elevated latency (D) detection of changes of state of jitter
and jitter dispersion signals (E) detection of increments of the min time series (F)
correlation of changes in jitter state with increments of changes of state in jitter signals.

3.2 Detection of period of elevated latency

Identifying time intervals with elevated RTTs. is a fundamental step of the con-
gestion inference process since the subsequent modules examine these periods
to determine if latency elevations were caused by increases of traffic loads. Our
framework can accommodate any change point detection algorithm that can
segment time intervals based on changes in RTTs. As proof of concept, we use
two state-of-the-art change point detection algorithms—Bayesian Change Point
(BCP) Detection or Hidden Markov Models (HMM)—to process the min time
series. We have not yet had the opportunity to test these methods on a large
variety of data sources, so we provide both alternatives to let Jitterbug users
select which is more effective for their data source. We believe these two algo-
rithms can complement each other in circumstance where one fails to cover all
change points in a signal. In §5.8, we test both algorithms with challenging la-
tency signatures and show how all periods of elevated latency are captured by
at least one of the methods.

Jitterbug: A new framework for jitter-based congestion inference 7

2017/Dec/02 2017/Dec/06 2017/Dec/10 2017/Dec/14

0

2

4 min
jit. dispersion

(a) Recurring congestion event. There is
a correlation between periods of elevated
latency and the growth of jitter dispersion.

2017/Dec/25 2017/Dec/29 2018/Jan/02 2018/Jan/06

0

2

4 min
jit. dispersion

(b) Recurring congestion event. Jitter dis-
persion transitorily increases at the begin-
ning of periods of elevated latency

2017/Dec/25 2017/Dec/29 2018/Jan/02 2018/Jan/062

0

2

4

6
min
jit. dispersion

(c) One-off non-congestion event on Jan 2,
with no correlation between signals.

2019/Sep/02 2019/Sep/06 2019/Sep/10 2019/Sep/14
0

2

4

6
min
jit. dispersion

(d) One-off congestion event, with a posi-
tive correlation between the min and jitter
dispersion time series.

Fig. 3. min RTT (orange) and jitter dispersion (purple) time series. We normalized
the values using standard score for this visualization; normalization is not necessary
in actual computation. In Fig. 3a and 3d, these two signals are strongly correlated
during period of congestion. In Fig. 3b, jitter dispersion has a transitory increase at
the beginning of the period of elevated latency. Fig. 3c (no apparent congestion) shows
no correlation between these signals, which is consistent with a route change that
increased RTT.

– Bayesian Change Point (BCP): We chose an offline BCP algorithm6 pro-
posed by Xuan et al. [36]. We experimented with other popular change point
detection algorithms (e.g., Change finder [11] and ATDK LevelShift [6]) and
found that BCP was the most effective at detecting boundaries of intervals
with RTT latency measurements in our data.

– Hidden Markov Models (HMM): We selected an implementation de-
signed to identify different discrete states in RTT latency time series, by
combining Hidden Markov Models (HMM) with Hierarchical Dirichlet Pro-
cess (HDP) [27]. HMM also yields boundaries for each state (or level) in
the time series, and in our case, consecutive RTT latency samples typically
belong to the same state for long periods of times.

3.3 Examination of jitter signals

Jitterbug uses two approaches to examine changes in jitter and jitter dispersion
time series during periods of elevated latency (Module (D) in Fig. 2): (i) KS-test
method (using the jitter time series), and (ii) Jitter dispersion method (using the

6 Implementation of Xuan et al. change point detection algorithm: https://github.
com/hildensia/bayesian changepoint detection.

https://github.com/hildensia/bayesian_changepoint_detection
https://github.com/hildensia/bayesian_changepoint_detection

8 Carisimo et al.

25
50 min

2017/Dec/07 2017/Dec/11
100

0
100

jitter

(a) KS-test: STEP 0

60

80 min

2017/Dec/29 2018/Jan/020

5 JD

(b) JD: STEP 0

25
50 min

2017/Dec/07 2017/Dec/11
100

0
100

jitter

(c) KS-test: STEP 1 (BCP)

60

80 min

2017/Dec/29 2018/Jan/020

5 JD

(d) JD: STEP 1 (BCP)

25
50 min

2017/Dec/07 2017/Dec/11
100

0
100

jitter

(e) KS-test: STEP 2 (Compare intervals)

60

80 min

2017/Dec/29 2018/Jan/020

5
1.68 4.49

JD

(f) JD: STEP 2 (Compare intervals)

Fig. 4. Steps of KS-test (left) and jitter dispersion (right) congestion inference meth-
ods. In both methods, Jitterbug uses the min time series to identify the beginning and
end of periods of elevated latency (Fig. 4c and Fig. 4d). Using these boundaries, both
methods look for changes in jitter signals in adjacent intervals. To detect these changes,
KS-test computes the Kolmogorov-Smirnov test on adjacent jitter samples (Fig. 4e);
the jitter dispersion method (Fig. 4f) compares the mean value of the jitter dispersion
signal (E).

jitter dispersion time series). Both methods rely on boundaries previously iden-
tified by the Interval Detection Module (Module (C) in Fig. 2). Fig. 4 describes
the input time series of each method, how they use change points detected by
Interval Detection Module and how they detect changes in jitter signals.

KS-test method This method examines changes in the jitter time series (Fig. 4a).
Using the change points extracted from the minimum time series by the Inter-
val Detection Module (Fig. 4c), Jitterbug detects a change of regime in jitter
time series during periods of elevated latency. Our hypothesis is that a trace
switched into a different congestion state if there is a change point in the mini-
mum time series and, at the same time, the jitter changes to a different regime.
To identify such a regime, Jitterbug applies the Kolmogorov-Smirnov (KS) test
to jitter samples in partitions before and after the change point (Fig. 4e). In
case the jitter samples in the partition before the change point have a different
distribution from the following partition, the KS test will reject the null hypoth-
esis (α = 0.05) meaning both samples were not generated by the same random

Jitterbug: A new framework for jitter-based congestion inference 9

process. To verify that the result of the KS test is not an artifact due to the
change point detection method, we apply the KS test to two random samples
in the same interval. For this validation test, we expect the KS test does not
reject the null hypothesis, which means there is no evidence to conclude that
samples within the same partition belong to different jitter regimes. We repeat
this process for all pairs of adjacent partitions.

Jitter dispersion method The input to this method is the jitter disper-
sion time series that we pre-computed in §3.1 (Fig. 4b). Similar to the KS-test
method, this method uses change points extracted from the minimum time series
by the Interval Detection Module (Fig. 4c), as boundaries between periods of
elevated latency (Fig. 4d). We assume when the elevation of latency is caused
by congestion, then the jitter dispersion increases, either transitorily at the be-
ginning (phase transition) or throughout the period (§3.1).

In both cases, during a period of congestion the average jitter dispersion is
larger than that of congestion-free periods. If the mean value of the jitter disper-
sion between consecutive periods (Fig. 4f) increases, we consider this period as
congested. We repeat this inference process for all pairs of adjacent partitions.

3.4 Latency Jump Detection

Jitterbug assumes that a period of congestion is a period of elevated latency
that manifests the growth of routers’ buffers occupancy. In the Latency Jump
Detection module (Module (E) in Fig. 2) Jitterbug uses the min time series and
the intervals identified by the Interval Detection Module (Module (C) in Fig. 2)
to detect latency increments. This modules flags a candidate period of congestion
if it detects in that period an increment of the mean value of the min time series
compared to its predecesor.

3.5 Combine changes in jitter and minimum time series

Jitterbug classifies a period of congestion (Module F in Fig. 2) if adjacent in-
tervals meet two conditions: (i) an increase in the RTT latency baseline (ii) an
increase in the jitter amplitude (transitory or generalized). Jitterbug combines
the results obtained by the Latency Jump Detection module with KS-test and
Jitter dispersion methods. Jitterbug assumes that a period of elevated latency
was generated by an increase in routers buffer occupancy if the KS-test or jitter
dispersion method detected changes in the jitter signals during that interval.

To increase the accuracy of these Jitterbug inferences in challenging scenarios,
and to allow users to calibrate inferences with their tolerance values, Jitterbug
includes two additional features: (i) congestion inference thresholds, and (ii)
memory.

– Congestion inference thresholds. To increase confidence of Jitterbug
congestion inferences, we include congestion inference thresholds when we

10 Carisimo et al.

Table 1. Description of the near- and far-side ASes in the evaluation dataset. We use
measurements collected from 13 Ark monitors hosted in 6 U.S. ISP to 18 far-side ASes
(7 Content Providers and 11 Access/Transit networks) and 49 far-IP addresses. This
data collection comprises 1.7M raw RTT samples collected between 2017 and 2020. for
1290 unique combinations of <day, VP, far IP>.

near-side ASes far-side ASes

VPs ISPs #ASes (# addr.) far ASname

13 18 (49)

COMCAST (AS7922), Netflix (AS2906),
NTT (AS2914), Level3 (AS3356),
PCCW (AS3491), KT (AS4766),

COMCAST, Verizon, Telstra (AS4637), TATA (AS6453),
AT&T, CenturyLink, China Telecom (AS4134), Zayo (AS6461),

Charter, Cox Cloudflare (AS13335), Charter (AS7843),
XO (AS2828), Edgecast (AS15133),

Google (AS15169), Amazon (AS16509),
Akamai (AS20940), Facebook (AS32934)

compare the mean value of the minimum RTT time series of consecutive
intervals. We also include a Jitter dispersion threshold (JD threshold) in
the jitter dispersion method when we compare changes in the mean value
of the signal in adjacent intervals. The values we use for this research are
0.25ms and 0.5ms thresholds for jitter dispersion and baseline, respectively,
as we found in the evaluation dataset (see § 4) that min and jitter dispersion
fluctuations tend to be below these values during periods of no suspected
congestion. These parameters allow us to reduce false positives and false
negatives in Jitterbug congestion inferences.

– Memory. To reduce errors in congestion inferences as a result of false posi-
tives in the change point detection process, we include the concept of mem-
ory. In some cases, change point detection algorithms identify path anoma-
lies within periods of congestion (e.g., route change during a congestion
episode) or a false positive. Under these circumstances, our congestion de-
tection methodology would not detect any change, either transitory or per-
manent in the jitter, and it would label the next interval as a period of
no congestion. However, the congestion status has not changed between
these adjacent intervals. To overcome this limitation, we include a rule called
memory that assumes that a period of congestion has not finished if in the
following interval the mean value of the minimum RTT does not decrease.
For example, for two given adjacent intervals I1 and I2, we will label I2 as
a period of congestion if we also labeled I1 as a period of congestion and
mean(minRTT (I2)) ≥ mean(minRTT (I1)).

4 Dataset

We focus on congestion at interdomain links which requires identification of IP
addresses of intedomain routers’ interfaces. MANIC [2] uses bdrmap [24] to infer

Jitterbug: A new framework for jitter-based congestion inference 11

the IP addresses of all interdomain links visible from the Autonomous System
hosting a CAIDA Ark [1] vantage point (VP). bdrmap returns pairs of near-
and far-side IP addresses of an interdomain link, and a set of prefixes reachable
through a path containing those near- and far-side IP addresses. We use the data
API of the MANIC platform [2] to obtain longitudinal RTT measurements from
Ark’s VPs to the far-side interface of interdomain links using the Time-Series
Latency Probing (TSLP) method [23]. Each VP runs TSLP measurements every
5 minutes using ICMP TTL-limited packet probes to all near- and far-side pairs
to collect RTT samples between the VP and IP addresses on the near and far
side of interdomain links. Furthermore, the MANIC platform labels interdomain
links that might have congestion events using an autocorrelation-based method
[12], which is effective in locating recurring congestion events that significantly
inflate the RTTs. We will use these inferences as cross-validation (§6.2).

We demonstrate our methodologies by inferring congestion from 13 VPs in
6 U.S. ISPs to 18 far ASes and 49 far-IP addresses, as it is shown in Table 1.
This dataset covers a total of 1290 unique combinations of <day, VP, far IP>
and contains 1.7M raw RTT samples collected between 2017 and 2020.

5 Results

We present our results of Jitterbug congestion inferences in the scenarios we
introduced in §2.2, which map to the taxonomy in Fig. 5. Specifically, we show
Jitterbug congestion inferences for periodic signals of large (§5.1) and small (§5.2)
amplitude as well as for one-off periods of elevated latency (§5.3 and 5.4). We
further investigate Jitterbug congestion inference in hybrid scenarios with one-
off events in the middle of repetitive periods of elevated latency (§5.5). We also
study the impact of memory (§5.6) and the JD threshold (§5.7) in the accuracy
of Jitterbug congestion inferences. Finally, we investigate how errors in detecting
change points impact in Jitterbug congestion inference (§5.8).

5.1 Scenario 1: recurrent period of elevated latency with large
amplitude signals

Both methodologies labeled every recurrent period of elevated latency as a pe-
riod of congestion (Fig. 6). We suppose that the accuracy of the congestion
inferences is partially due to the small of contribution of other random factors
since we observe small variability in the baseline during periods of non-elevated
latency. The profile of the minimum time series indicates a small contribution
of other random components, which create slight fluctuations during periods
of non-elevated latency. In addition, the size of this router buffer amplifies the
range of the raw, min and jitter time series (in some cases over 100ms) which
simplifies the task of identifying periods of high jitter fluctuations.

12 Carisimo et al.

Suspected

case

Period of elevated latency

Periodic

high-amplitude
signal

One-off

small-amplitude
signal

Solid baseline
change

high-amplitude
spikes

....Manifestation

Insuf. capacity +
Large buffer

allocation

Insuf. capacity +
Small buffer
allocation

route change Flash crowd....

Fig. 5. Hierarchical classification of characteristics of elevated latency. We classify
periods of elevated latency as either periodic (left branch) or one-off (right branch).
Recurrent latency with a consistent period (periodic) suggests an underprovisioned
link. A one-off episode of elevated latency can have many causes, e.g., bufferbloat,
flash crowd, misconfiguration, route change.

Fig. 6. KS-test (middle plot) and Jitter dispersion (lower plot) congestion inferences
for a periodic high-amplitude signal. In this case, both methods label every recurrent
period of elevated latency as periods of congestion. Red-filled intervals indicate periods
of congestion.

5.2 Scenario 2: recurrent period of elevated latency with small
amplitude signals

Fig. 7 shows that only the jitter dispersion method labels periods of elevated
latency as periods of congestion. We believe that the stability in the jitter time
series at periods of elevated latency impedes the KS-test method’s inferences.
This jitter stability may be due to small buffers (differences between peak and
valley values is 30ms) or traffic engineering on the far side network, which in
this case is a large Content Provider. On the other hand, the high amplitude of
the phase transitions in the jitter dispersion time series allows the JD method
to detect differences in the mean value of this signal during periods of elevated
latency. We note that the change point detection module is not capable of de-
tecting period of elevated latency between January 1, 2018 and January 3, 2018.

Jitterbug: A new framework for jitter-based congestion inference 13

Fig. 7. KS-test and Jitter dispersion congestion inferences for a periodic small-
amplitude signal. Only the jitter dispersion method infers congestion from this recur-
rent pattern, which we speculate relates to small buffers that keep jitter itself relatively
stable. Remarkably, the change point detection algorithm was not able to capture some
periods of elevated latency. Red-filled intervals indicate periods of congestion.

(The slightly smoother transition during this period trace could have hindered
the accuracy of the change point detection algorithm.)

5.3 Scenario 3: one-off period of elevated latency with no congestion

Fig. 8. KS-test and Jitter dispersion congestion inferences for a one-off event suspected
as a route change. Inferences for this case indicate no congestion. Red-filled intervals
indicate periods of congestion.

Fig. 8 shows an example in which neither method infers congestion. In this
case, we do not observe any change in either the jitter time series or the jitter
dispersion either before or after the period of elevated latency. We suppose that
this period corresponds to a route change based on the stability of the jitter
time series and the clean profile of the min time series during the transition.
Since there is no simultaneous increase in near-side RTT (orange curve in Fig. 8

14 Carisimo et al.

top panel), we believe that a route changed in the reverse path from the far-side
router.

5.4 Scenario 4: one-off period of elevated latency with congestion

Fig. 9. KS-test and Jitter dispersion congestion inferences for a one-off congestion
event. In this case, both methods infer congestion during periods of elevated latency.
Red-filled intervals indicate periods of congestion.

(Fig. 9) Congestion inferences from both methods partially agree on clas-
sifying this one-time episode of high amplitude latency spikes as a period of
congestion. Detection of multiple change points, and the fact that the period in
between has slightly smaller mean value in the min time series, generate that
the period of congestion inferred is smaller than the actual period of elevated
latency.

5.5 Scenario 5: one-off event during recurrent periods of elevated
latency

The biggest challenge for latency-based congestion detection is to distinguish
congestion-induced elevated latency from other path anomalies, such as a route
change. Fig. 10 shows two examples of KS-test and jitter dispersion congestion
inferences when route changes occur in the middle of recurrent periods of ele-
vated latency. In these cases, we confirm that the events occurring on March
20, 2017 at 12pm (Fig. 10a) and on April 20, 2017 before midnight (Fig. 10b)
are route changes in the internal network of the ISP since the near- (orange)
and far-side (blue) min time series detect an elevation simultaneously. As we ex-
pected for a route change, these events do not show any change in jitter signals.
Our method used the jitter dispersion metric to correctly rule out a candidate
congestion period as a route change (rather than congestion), due to low jitter
dispersion which we know is not strongly correlated with congestion dynam-
ics. This example illustrates the importance of jitter dynamics in detection of
network congestion events.

Jitterbug: A new framework for jitter-based congestion inference 15

(a) (b)

Fig. 10. Two examples of suspected route changes in the middle of recurrent periods of
elevated latency. Neither method inferred any congestion. Red-filled intervals indicate
periods of congestion.

5.6 Scenario 6: Change point detection over-detects change points

We use an additional set of examples to investigate how the memory feature
compensates for weaknesses in change point detection algorithms, specifically
when algorithms are over-sensitive and create too many intervals.

Fig. 11 shows examples of how memory improves the accuracy of congestion
inferences in different circumstances. Fig. 11a and 11b shows how memory in-
creases the accuracy of congestion inferences in the presence of over-partitioned
periods of elevated latency. While this feature increases the number of intervals
labeled as periods of congestion in the presence of multiple change points, it
is not able to fix all of them. Fig. 11c and 11d show how memory extends the
inferred period of congestion where there is a legitimate change point during this
period. These figures show a persistent increase in the minimum RTT baseline,
which we suspect was due to a route change during a period of congestion. We
assume that the lack of RTT measurements below that baseline corresponds to
speed-of-light constraints induced by the more circuitous path used during the
period of congestion.

5.7 Scenario 7: Adjusting JD threshold to minimize false positives

Fig. 12 shows examples of how one can adjust the JD threshold to minimize
false positives in congestion inferences. Fig. 12a and 12b compare congestion
inferences using JD thresholds of 0.25 ms and 0.5 ms, respectively. In this ex-
ample, the jitter dispersion ranges from 0.26 to 92.64 ms, showing a flat curve
for most of the period and a one-off event that generates a large spike. Due to
the flatness of the curve we selected two thresholds close to the baseline jitter
dispersion values (D+0.25 and D+0.5 ms), and inferred a period of congestion
if jitter dispersion exceeded these thresholds, which in this case means the jitter
dispersion doubled or tripled. We found that our first threshold (0.25) was too
sensitive, since a small perturbation in jitter dispersion, in addition to a false
positive inference from the change point algorithm, generated a false positive
congestion inference.

16 Carisimo et al.

(a) Memoryless congestion inference (b) memory congestion inference

(c) Memoryless congestion inference (d) Memory congestion inference

Fig. 11. Examples of how the memory feature improves accuracy of congestion in-
ferences in the presence of of over-partitioned intervals and other path anomalies.
Fig. 11a and 11b display how memory maximizes congestion inferences in scenarios
where change point detection algorithms overfit detection, breaking the time series
into too many intervals. Fig. 11c and 11d show another example of how memory can
inform congestion inference when a route change occurs within a period of congestion.
Red-filled intervals indicate periods of congestion.

5.8 Scenario 8: False negatives in change point detection

One desired characteristic of a change point detection algorithm is the ability
to precisely detect the beginning and ending points (all of them) of all periods
elevated latency. In practice this is not possible for every time series, and in our
case the lack of change points hinder the accuracy of congestion inferences. We
use additional examples to investigate the accuracy of the change point detection
algorithms we included in Jitterbug.

Fig. 13 shows two pairs of examples where the precision of Interval Detection
varies depending on the algorithm being applied and the traffic scenario: BCP
is more precise that HMM (Fig. 13a and 13b) and HMM is more precise than
BCP (Fig. 13c and 13d)). Fig. 13a shows a scenario where HMM misses several
consecutive change points, creating a prolonged period that does not precisely
capture the periods of congestion in that measurement. For the same scenario,
Fig. 13b shows that BCP correctly infers those periods of congestion. Conversely,
Fig. 13c shows a scenario in which HMM is more accurate than BCP at detecting
change points (Fig. 13d).

6 Comparative evaluation of Jitterbug

The current version of Jitterbug allows users to infer congestion using 4 differ-
ent configurations by changing: (i) the change point detection algorithm (BCP
or HMM, see §3.2), or (ii) the congestion inference method (KS-test or jitter

Jitterbug: A new framework for jitter-based congestion inference 17

(a) JD threshold = 0.25 ms (b) JD threshold = 0.5ms

Fig. 12. Adjusting the JD threshold can mitigate false positive in congestion infer-
ences. Fig. 12a shows that a too-sensitive threshold can yield errors even in the pres-
ence of a flat jitter dispersion time series. Fig. 12b shows how small adjustments in this
threshold can mitigate false positive congestion inferences. Red-filled intervals indicate
periods of congestion.

dispersion, see §3.3). In this section we compare Jitterbug inferences for each
configuration, first comparing the KS-test and JD methods to each other (§6.1),
and cross-validated with the state-of-the-art congestion detection methods [12]
(§6.2).

6.1 Comparing inferences of KS-test and JD methods

Table 2 compares congestion inferences of KS-test and jitter dispersion methods
for the same interval using different change point detection alternatives (BCP
on the left hand-side and HMM on the right hand-side). The results show no
significant variations related to the change point detection used for the infer-
ences. KS-test and jitter dispersion indicate the same congestion status for most
intervals since the fraction of intervals equally labelled is 0.67 (128/192) and
0.64 (129/201) when using BCP and HMM, respectively. The jitter dispersion
method tends to label more intervals as period of congestion than the KS-test
method where the fraction of intervals considered as periods of congestion only by
jitter dispersion is 0.29 (56/192) and 0.32 (63/201) for BCP and HMM, respec-
tively. The KS-test method labels fewer intervals as period of congestion since
this method only detects a narrow type of congestion signature in which conges-
tion implies a change in jitter regime. For instance, when random components
of latency are more significant than queueing delay, this noise limits the ability
of KS-test to detect a change in the jitter regime. In addition, we found that the
KS-test is unable to detect congestion generating changes of jitter regimes when
a bottleneck router buffer is small. We suspect that small buffers do not allow us
to observe jitter fluctuations to classify them as a change of jitter regime. Active
traffic engineering strategies could keep jitter within a certain band. Despite that
the KS-test method effectively infers congestion for a narrow type of congestion
signature, we have included this method for its simplicity to detect congestion
in cases with a large signal-to-noise ratio.

18 Carisimo et al.

(a) Example A: HMM misses some change
points

(b) Example A: BCP detects all change
points

(c) Example B: HMM detects more change
points than BCP (Fig. 13d)

(d) Example B: BCP misses some change
points

Fig. 13. Two pairs of examples showing the limitations of change point detection
algorithms to detect all change points (vertical dashed lines). Fig. 13a shows an example
where HMM is not able to capture some change points in contrast to BCP that detects
all of them (Fig. 13b). Fig. 13c shows an example where HMM is a more accurate
than BCP at detecting change points (Fig. 13d) Red-filled intervals indicate periods of
congestion.

6.2 Comparing inferences with cross-validation data

We validate KS-test and jitter dispersion congestion inferences using CAIDA’s
autocorrelation-based congestion inferences as cross-validation data. In the pres-
ence of recurrent congestion, CAIDA’s congestion inferences count the number
of 15-minute intervals with elevated latency. Using this schema, CAIDA’s con-
gestion inferences report the daily congestion severity of a link with a variable
that ranges from 0 to 967. We use Jitterbug outputs to generate the same daily
estimations.

Fig. 14 shows how close are the daily congestion estimations of Jitterbug and
CAIDA’s congestion inference data. We also compared estimations with a max-
imum difference of 10% (in number of congested 15-minute intervals), and the
fraction of days that agree to within this 10% margin rises to 76-80% depend-
ing on the combination (80% for JD method using BCP). The most prominent
discrepancies in this evaluation corresponds to two categories: (i) Jitterbug false
positive inferences in periods with no congestion, and (ii) one-off congestion

7 One day has 96 periods of 15 minutes.

Jitterbug: A new framework for jitter-based congestion inference 19

Table 2. Fraction (and total number) of (dis)agreements for different methodologies.
The bar on top means a scenario with no congestion.

BCP HMM

CKS CKS SUM CKS CKS SUM

CJD 0.43 (82) 0.04 (8) 0.47 (90) 0.39 (80) 0.04 (9) 0 .43 (89)

CJD 0.29 (56) 0.24 (46) 0.53 (92) 0.31 (63) 0.24 (49) 0.57 (112)

SUM 0.72 (138) 0.28 (54) 192 0.70 (143) 0.28 (58) 201

100 75 50 25 0 25 50 75 100
t(autocorr.) t(Jitterbug)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

JD
KS

(a) BCP

100 75 50 25 0 25 50 75 100
t(autocorr.) t(Jitterbug)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

JD
KS

(b) HMM

Fig. 14. Cumulative distribution function of the differences between the estimated
daily time of congestion by autocorrelation-based methods and Jitterbug. These meth-
ods show remarkable similarity: 52% of days show no difference in inference regardless
of change point detection method or congestion-detection method (KS vs JD).

events detected by Jitterbug but not present in CAIDA’s congestion inference
data since CAIDA’s method only attempts to infer recurrent (periodic) conges-
tion episodes.

7 Lessons learned

In this section we enumerate important aspects we have identified for jitter-based
congestion inference.

1. Jitter and jitter dispersion signatures provide meaningful informa-
tion to identify congestion events as periods of elevated latency.
We found that periods of congestion manifest in RTT latency measurements
not only as periods of elevated latency, but also changes in jitter (and jitter-
derivated signals) time series.

20 Carisimo et al.

2. Jitter signals allowed us to discard periods of elevated latency
generated by other path anomalies, e.g., route changes. Including
jitter-based analysis in the detection of congestion events allowed us to dif-
ferentiate congestion events from other path anomalies. In non-congestion-
related events, jitter and jitter dispersion time series tend not to change
during periods of elevated latency.

3. Period of elevated latency only to the far-side does not necessarily
mean congestion. We noticed that the simultaneous periods of elevated
latency to near- and far-sides suggest a route change in the internal network
of the ISP but a period of elevated latency to the far-side only does not
necessarily indicate congestion. Although in many cases a period of elevated
latency to the far-side only indicates a growth in the buffer occupancy of
the interdomain link, this event could also suggest a route change only in
the reverse path from the far-side router. We use jitter and jitter disper-
sion to identify traces with elevations only to the far-side router but not
corresponding to congestion events.

4. Shallower increments of RTT values when a link transitions to a
period of congestion tend to affect jitter signatures too. We observed
a negative correlation between the increment of RTT values during periods
of congestion and the visibility of changes in jitter signatures. We suppose
this decrement in the contrast of RTT latency values between periods of
elevated latency and other periods is related to the size of router buffers. We
speculate that modern recommendations to keep buffers small [5] will likely
affect jitter time series.

5. The contribution of other random components of RTT latency can
reveal congestion dynamics . Some traces contain random contributions
that mask queueing delay fluctuations in the jitter time series during periods
of elevated latency. Although this is not a widespread phenomenon, it could
compromise Jitterbug’s ability to infer congestion, especially with the KS-
test method.

6. Limitations of change point detection methodologies to detect all
periods of elevated latency. None of the change point detection algo-
rithms we examined could identify all change points in the min time series
in our data. There is a wide variety of signal profiles in RTT latency mea-
surements and several types of congestion signatures, including periods of
elevated latency with flat, smooth and spiky signatures. We suppose that
change point detection algorithms may not be able to capture change points
for all types of signatures in this large set of profiles. To be able to iden-
tify all periods of elevated latency is crucial since the accuracy of Jitterbug
congestion inferences mostly relies on detecting these intervals.

7. Change point detection is expensive. The BCP and HMM methods
required significant time to execute on the 15-day traces we analyzed for
this study, typically between 60 and 90 seconds. Optimizing performance of
these methods will be critical for operational utility.

8. The KS-test method only captures a limited type of congestion
event signature. But it is a simple and clean congestion inference approach,

Jitterbug: A new framework for jitter-based congestion inference 21

cost-effective for many scenarios beyond those we studied, and can inform
further research in this area.

8 Related work

Inferring network congestion with RTT measurements. Previous research efforts
focused on interdomain congestion inference leveraging from recurrent periods
of elevated latency [12,23]. To generate these inferences, these works relied on
a set of CAIDA’s (Ark) [1] to run RTT latency measurements to all visible IP-
level interconnection links [24]. Time Series Latency Probes (TSLP) [12,23] is
the result of these latency measurement campaigns. An autocorrelation method
is apply to traces on the TSLP data collection to find multi-day repetition of
elevated delays around the same times, i.e., driven by diurnal demand. However,
this method to detect congestion requires some level of manual inspection. With
a similar approach, Fontugne et al. [15] proposed a latency-based methodology
to detect congestion in last-mile access networks. They used RIPE Atlas probes
to run traceroute measurements campaigns and inferred congestion applying a
methodology to detect latency deviations.

Anomaly detection on network paths. RTT time series has been also used to
detect a wide range of network events, such as path anomalies [13,14] and route
changes [30,17].

Change point detection. Change Point Detection algorithms aim to detect change
point detection (also known as time series segmentation) as abrupt changes in
a sequence of observations (e.g., a time series) to divide a sequence into a fi-
nite number of non-overlapping partitions [3]. These algorithms are typically
based on mathematical or machine learning models [3,4,11,31,36]. Another study
found that some unsupervised anomaly detection tools for change point are no-
tably time consuming [32]. Even though these methods are effective in capturing
change points in the time series [9], event classification still requires human in-
spection.

Mathematical approaches for congestion detection. Another type of studies brought
sophisticated mathematical and statistical concepts to investigate congestion
events. Mouchet et al. [27] proposed to use Hidden Markov Models (HMM) to
identify different states in RTT latency time series, however, these states corre-
spond to different latency values and do not report discriminate events caused
by different types of events (e.g., route change vs congestion event). More re-
cently, Spang et al. [34] proposed to use A/B tests in TCP lab measurements to
generate unbiased evaluations of TCP Congestion Control Algorithms (CCA).
However, the applicability of this approach relies on the assumption on indepen-
dent traffic flows, which in practice may be compromised by the synchronization
of TCP flow and short-lived TCP transfers. In addition, engineers typically used
more pragmatic evaluations to test the impact of their changes.

22 Carisimo et al.

9 Open Challenges

Other approaches not covered in this paper may be useful to extract information
embedded in jitter signals. Early in this project we proposed and tested at least
other four different approaches to jitter-based congestion inference. One aimed to
capture the jitter variability at the beginning of a period, and another applied the
same concept of the KS-test method but using j-min (definition in §3.1) instead.
A third alternative used anomaly detection techniques to detect changes in jitter
volatility. The fourth alternative used parametric models, including Normal and
Levy-Stable distributions, to fit jitter behavior. These alternative approaches are
promising and it is worth exploring them as part of future work.

In the future we also expect fluctuations of queueing delay to become more
challenging to distinguish in RTT latency measurements as a consequence of
smaller router buffers following modern buffer sizing recommendations [5,16].
Jitterbug central assumption is that a period of congestion is a period of ele-
vated latency, however, if latency signatures show imperceptible queueing de-
lays, this may comprise the accuracy of change point detection algorithms to
detect periods of elevated latency. In addition, the rise of delay-sensitive real-
time applications (e.g., videocalls, online gaming, etc.) could also incentivize the
reduction of router buffer sizes. We observed (§2.2) a correlation between jitter
signatures and buffer sizes and recognize that smaller buffer sizes could impede
Jitterbug congestion inferences.

More demanding requirements of jitter-sensitive applications (e.g. live video
streaming) could also modify traffic patterns and latency signatures. Today’s
HTTP-based video delivery relies on playback modulation to mitigate jitter im-
pact on video flow [28,29]. However, in the future, real-time video broadcasting
may requiere shorter playback jitters — and consequently dedicated traffic en-
gineering strategies — that could modify the shape of the jitter curve and thus
Jitterbug inferences.

Foreseeable changes in the foundational protocols of the TCP/IP stack could
modify traffic dynamics and the nature of latency signatures. New latency-based
Congestion Control Algorithms could modify latency signatures and buffer oc-
cupancy. The rollout of QUIC [22,8,33,18] could spread new features in the net-
work potentially reshaping the nature of traffic dynamics. For example, QUIC
proposes to aggregate and multiplex multiple short-lived web data transfers —
typically run in parallel per-resource TCP sessions [8]— into a single transport-
layer protocol session.

We expect that future work from ML/AI communities develop more cost-
effective change point detection tools. The growing necessity of monitoring large-
scale time series databases to generate (near) real-time anomaly detection is
likely to be the driver of optimization in this space [32]. We expect that in the
coming years we are going to count with more rapid and optimized supervised
and unsupervised anomaly detection algorithms to detect change points.

Jitterbug: A new framework for jitter-based congestion inference 23

10 Conclusions and Future work

In this paper we proposed Jitterbug, a novel framework to infer network con-
gestion combining pre-existing approaches with information embedded in jitter
signals. We found that jitter allowed us to expand congestion inference beyond
scenarios of recurrent congestion patterns, such as one-time congestion events.
We discovered that jitter (and jitter-derived signals) time series is useful to dis-
criminate periods of elevated latency caused by congestion from route changes.

We have also learned about the various challenges of inferring network conges-
tion with RTT latency measurements. The vastly heterogeneous structure of the
network is reflected in diverse latency signatures showing large and short buffer
sizes, remarkable presence of randomness unrelated from congestion events, etc.
We have also learned about limitations of change point detection algorithms in
detecting all beginning and ending points of periods of elevated latency as well
as the time required to obtain results from these algorithms.

Applying Jitterbug to the cases in our dataset, we obtained similar results
to recent autocorrelation methods [12]. However, in contrast to that method,
which is based on the repetitiveness of the signal and uses information of near-
and far-side RTT latency measurements, Jitterbug is fully based on far-side
RTT latency measurements and does not rely on repetitiveness to discern the
congestion status of a period.

We hope that this work will encourage studies focused on network congestion
inference, jitter analysis and change point detection algorithms. In the future, we
would like to investigate how sampling rates (higher and lower) affect congestion
inferences and profiles of RTT latency signatures. For example, studies in finan-
cial time series have found that the distribution of assets returns vary depending
on the scaling factor (i.e. time elapsed between samples) [20,25], we would like
to investigate if this also happens on jitter time series. We are also interested
in studying whether we could develop purely jitter-based congestion inference
methods. Another topic that we would like to investigate is if inter-packet delay
in back-to-back measurements, for example using FAST probing tool [26], could
allow us to infer congestion

11 Acknowledgements

We thank the anonymous reviewers for their insightful comments, and Maxime
Mouchet for providing an implementation of the HMM algorithm. We would
like to thank Fabian Bustamante (Northwestern University) for coming up with
the original term Jitterbug to name this paper. This work was partly funded
by research grants DARPA HR00112020014, NSF OAC-1724853 and NSF CNS-
1925729.

References

1. Archipelago measurement infrastructure updates. https://catalog.caida.org/
details/media/2011 archipelago, accessed: 2021-9-30

https://catalog.caida.org/details/media/2011_archipelago
https://catalog.caida.org/details/media/2011_archipelago

24 Carisimo et al.

2. Manic. https://catalog.caida.org/details/software/manic, accessed: 2021-10-13
3. Adams, R.P., MacKay, D.J.: Bayesian online changepoint detection. arXiv preprint

arXiv:0710.3742 (2007)
4. Aminikhanghahi, S., Cook, D.J.: A survey of methods for time series change point

detection. Knowledge and information systems 51(2), 339–367 (2017)
5. Appenzeller, G., Keslassy, I., McKeown, N.: Sizing router buffers. ACM SIGCOMM

Computer Communication Review 34(4), 281–292 (2004)
6. ARUNO: ADTK Detectors. https://arundo-adtk.readthedocs-hosted.com/en/

stable/api/detectors.html (2021)
7. Cardwell, N., Cheng, Y., Gunn, C.S., Yeganeh, S.H., Jacobson, V.: Bbr:

Congestion-based congestion control: Measuring bottleneck bandwidth and round-
trip propagation time. Queue 14(5), 20–53 (2016)

8. Carlucci, G., De Cicco, L., Mascolo, S.: Http over udp: an experimental investi-
gation of quic. In: Proceedings of the 30th Annual ACM Symposium on Applied
Computing. pp. 609–614 (2015)

9. Davisson, L., Jakovleski, J., Ngo, N., Pham, C., Sommers, J.: Reassessing the
constancy of end-to-end internet latency. In: Proceedings of IFIP TMA (2021)

10. Demichelis, C., Chimento, P.: Rfc3393: IP packet delay variation metric for IP
performance metrics (IPPM). https://datatracker.ietf.org/doc/html/rfc3393 (Nov
2002)

11. Desobry, F., Davy, M., Doncarli, C.: An online kernel change detection algorithm.
IEEE Transactions on Signal Processing 53(8), 2961–2974 (2005)

12. Dhamdhere, A., Clark, D.D., Gamero-Garrido, A., Luckie, M., Mok, R.K., Aki-
wate, G., Gogia, K., Bajpai, V., Snoeren, A.C., Claffy, K.: Inferring persistent
interdomain congestion. In: Proceedings of the 2018 Conference of the ACM Spe-
cial Interest Group on Data Communication. pp. 1–15 (2018)

13. Fontugne, R., Mazel, J., Fukuda, K.: An empirical mixture model for large-scale
RTT measurements. In: Proceedings of IEEE INFOCOM (2015)

14. Fontugne, R., Pelsser, C., Aben, E., Bush, R.: Pinpointing delay and forwarding
anomalies using large-scale traceroute measurements. In: Proceedings of ACM In-
ternet Measurement Conference (2017). https://doi.org/10.1145/3131365.3131384

15. Fontugne, R., Shah, A., Cho, K.: Persistent last-mile congestion: Not so uncommon.
In: Proceedings of the ACM Internet Measurement Conference. pp. 420–427 (2020)

16. Gettys, J.: Bufferbloat: Dark buffers in the internet. IEEE Internet Computing
15(3), 96–96 (2011)

17. Iodice, M., Candela, M., Battista, G.D.: Periodic path changes in RIPE Atlas.
IEEE Access 7, 65518–65526 (2019). https://doi.org/10.1109/access.2019.2917804

18. Iyengar (Ed.), J., Thomson (Ed.), M.: QUIC: A UDP-Based Multi-
plexed and Secure Transport. RFC 9000 (Proposed Standard) (May 2021).
https://doi.org/10.17487/RFC9000, https://www.rfc-editor.org/rfc/rfc9000.txt

19. Jacobson, V.: Congestion avoidance and control. ACM SIGCOMM computer com-
munication review 18(4), 314–329 (1988)

20. Jaroszewicz, S., Mariani, M.C., Ferraro, M.: Long correlations and truncated levy
walks applied to the study latin-american market indices. Physica A: Statistical
Mechanics and its Applications 355(2-4), 461–474 (2005)

21. Laki, S., Mátray, P., Hága, P., Csabai, I., Vattay, G.: A detailed path-
latency model for router geolocation. In: EAI Tridentcom. IEEE (2009).
https://doi.org/10.1109/tridentcom.2009.4976258

22. Langley, A., Riddoch, A., Wilk, A., Vicente, A., Krasic, C., Zhang, D., Yang, F.,
Kouranov, F., Swett, I., Iyengar, J., et al.: The quic transport protocol: Design and

https://catalog.caida.org/details/software/manic
https://arundo-adtk.readthedocs-hosted.com/en/stable/api/detectors.html
https://arundo-adtk.readthedocs-hosted.com/en/stable/api/detectors.html
https://datatracker.ietf.org/doc/html/rfc3393
https://doi.org/10.1145/3131365.3131384
https://doi.org/10.1109/access.2019.2917804
https://doi.org/10.17487/RFC9000
https://www.rfc-editor.org/rfc/rfc9000.txt
https://doi.org/10.1109/tridentcom.2009.4976258

Jitterbug: A new framework for jitter-based congestion inference 25

internet-scale deployment. In: Proceedings of the conference of the ACM special
interest group on data communication. pp. 183–196 (2017)

23. Luckie, M., Dhamdhere, A., Clark, D., Huffaker, B., Claffy, K.: Challenges in in-
ferring internet interdomain congestion. In: Proceedings of the 2014 Conference on
Internet Measurement Conference. pp. 15–22 (2014)

24. Luckie, M., Dhamdhere, A., Huffaker, B., Clark, D., Claffy, K.: Bdrmap: Inference
of borders between ip networks. In: Proceedings of the 2016 Internet Measurement
Conference. pp. 381–396 (2016)

25. Mantegna, R.N., Stanley, H.E.: Econophysics: Scaling and its breakdown in finance.
Journal of statistical Physics 89(1), 469–479 (1997)

26. Marder, A., Claffy, K.C., Snoeren, A.C.: Inferring cloud interconnections: Valida-
tion, geolocation, and routing behavior. In: International Conference on Passive
and Active Network Measurement. pp. 230–246. Springer (2021)

27. Mouchet, M., Vaton, S., Chonavel, T., Aben, E., Den Hertog, J.: Large-scale char-
acterization and segmentation of internet path delays with infinite hmms. IEEE
Access 8, 16771–16784 (2020)

28. Mustafa, I.B., Nadeem, T.: Dynamic traffic shaping technique for http adaptive
video streaming using software defined networks. In: 2015 12th Annual IEEE Inter-
national Conference on Sensing, Communication, and Networking (SECON). pp.
178–180. IEEE (2015)

29. Pu, W., Zou, Z., Chen, C.W.: Video adaptation proxy for wireless dynamic adaptive
streaming over http. In: 2012 19th International Packet Video Workshop (PV). pp.
65–70. IEEE (2012)

30. Pucha, H., Zhang, Y., Mao, Z.M., Hu, Y.C.: Understanding network delay changes
caused by routing events. ACM SIGMETRICS Performance Evaluation Review
35(1), 73–84 (jun 2007). https://doi.org/10.1145/1269899.1254891

31. Punskaya, E., Andrieu, C., Doucet, A., Fitzgerald, W.J.: Bayesian curve fitting
using mcmc with applications to signal segmentation. IEEE Transactions on signal
processing 50(3), 747–758 (2002)

32. Ren, H., Xu, B., Wang, Y., Yi, C., Huang, C., Kou, X., Xing, T., Yang, M., Tong,
J., Zhang, Q.: Time-series anomaly detection service at microsoft. In: Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. pp. 3009–3017 (2019)

33. Rüth, J., Poese, I., Dietzel, C., Hohlfeld, O.: A first look at quic in the wild. In:
International Conference on Passive and Active Network Measurement. pp. 255–
268. Springer (2018)

34. Spang, B., Hannan, V., Kunamalla, S., Huang, T.Y., McKeown, N., Johari, R.: Un-
biased experiments in congested networks. arXiv preprint arXiv:2110.00118 (2021)

35. Turkovic, B., Kuipers, F.A., Uhlig, S.: Interactions between congestion control al-
gorithms. In: 2019 Network Traffic Measurement and Analysis Conference (TMA).
pp. 161–168. IEEE (2019)

36. Xuan, X., Murphy, K.: Modeling changing dependency structure in multivariate
time series. In: Proceedings of the 24th international conference on Machine learn-
ing. pp. 1055–1062 (2007)

https://doi.org/10.1145/1269899.1254891

